

# 1 Potential Health Benefits and Adverse Effects Associated with 2 Phytate in Foods: A Review

3 Habtamu Fekadu Gemedé<sup>1</sup>

4 <sup>1</sup> Addis Ababa University

5 *Received: 6 December 2013 Accepted: 4 January 2014 Published: 15 January 2014*

6

---

## 7 **Abstract**

8 2,3,4,5,6) Phytate (myo-inositol (1,2,3,4,5,6) hexakis - phosphate), a naturally compound  
9 formed during maturation of plant seeds and grains is a common constituent of plantderived  
10 foods. This paper is aimed to review the scientific information concerning the potential health  
11 benefits and adverse effects associated with phytate in foods. The adverse health effects of  
12 phytate in the diet is its effect on mineral uptake. Minerals of concern in this regard would  
13 include Zn<sup>2+</sup>, Fe<sup>2+</sup>/<sup>3+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, and Cu<sup>2+</sup>. Especially zinc and iron  
14 deficiencies were reported as a consequence of high phytate intakes. In addition, a the adverse  
15 effect on the nutritional value of protein by dietary phytate is discussed. Consumption of  
16 phytate, however, seems not to have only adverse health effects but also potential benefits on  
17 human health. Dietary phytate was reported to prevent kidney stone formation, protect  
18 against diabetes mellitus, caries, atherosclerosis and coronary heart disease as well as against a  
19 variety of cancers.

20

---

21 **Index terms**— antinutrient, phytate, health benefits, health effects, human nutrition.

## 22 **1 Introduction**

23 Phytate (is also known as Inositol hexakisphosphate (InsP<sub>6</sub>)) is the salt form of phytic acid, are found in plants,  
24 animals and soil. It is primarily present as a salt of the mono-and divalent cations K<sup>+</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup> and  
25 accumulates in the seeds during the ripening period. Phytate is regarded as the primary storage form of both  
26 phosphate and inositol in plant seeds and grains [1]. In addition, phytate has been suggested to serve as a store  
27 of cations, of high energy phosphoryl groups, and, by chelating free iron, as a potent natural anti-oxidant [2,3].

28 Phytate is ubiquitous among plant seeds and grains, comprising 0.5 to 5 percent (w/w) [1]. The phosphorus  
29 bound to phytate is not typically bioavailable to any animal that is non-ruminant. Ruminant animals, such as  
30 cows and sheep, chew, swallow, and then regurgitate their food. This regurgitated food is known as cud and is  
31 chewed a second time. Due to an enzyme located in their first stomach chamber, the rumen, these animals are  
32 able to separate, and process the phosphorus in phytates. Humans and other nonruminant animals are unable  
33 to do so [4].

34 Phytate works in a broad pH-region as a highly negatively charged ion, and therefore its presence in the diet  
35 has a negative impact on the bioavailability of divalent, and trivalent mineral ions such as Zn<sup>2+</sup>, Fe<sup>2+</sup>/<sup>3+</sup>,  
36 Ca<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, and Cu<sup>2+</sup> [6]. Whe -ther or not high levels of consumption of phytate-containing foods  
37 will result in mineral deficiency will depend on what else is being consumed. In areas of the world where cereal  
38 proteins are a major and pred -ominant dietary factor, the associated phytate intake is a cause for concern [27].

39 Besides, phytate has also been reported to form complexes with proteins at both low, and high pH values.  
40 These complex formations alter the protein structure, which may result in decreased protein solubility, enzymatic  
41 activity, and proteolytic digestibility. The phytate degrading enzyme, phytase, is in vogue for degrading phytate  
42 during food processing, and in the gastrointestinal tract. The major concern about the presence of phytate in  
43 the diet is its negative effect on mineral uptake [28]. Phytate markedly decrease Ca bioavailability, and the

## 4 ADVERSE HEALTH EFFECTS OF PHYTATE

---

44 Ca:Phy molar ratio has been proposed as an indicator of Ca bioavailability. The critical molar ratio of Ca: Phy  
45 is reported to be 6:1 [29]. In human studies, Phy:Zn molar ratios of 15:1 have been associated with reduced zinc  
46 bioavailability, and the molar ratio ??Ca][Phy]/[Zn] is a better predictor of zinc availability, because calcium  
47 exacerbates phytate's effect on zinc absorption, and if the values were greater than 0.5 mol/kg, there would be  
48 interference with the availability of zinc [30].

## 49 2 P

50 At the same time, phytate may have beneficial roles as an Antioxidant, and Anticarcinogen [31]. The outcome of  
51 surveillance of populations consuming vegetarian-type diets has shown lower incidence of Cancer, which suggests  
52 that phytate has an Anticarcinogen effect [32]. Dietary phytate may have health benefits for Diabetes patients  
53 because it lowers the blood glucose response by reducing the rate of starch digestion and slowing gastric emptying.  
54 Likewise, phytate has also been shown to regulate Insulin secretion [33]. It is believed that phytate reduces Blood  
55 clots, Cholesterol, and Triglycerides, and thus prevents Heart diseases. It is also suggested that it prevents renal  
56 stone development. It is used as a complexing agent for removal of traces of heavy metal ions [34].

57 Depending on the amount of plant-derived foods in the diet, and the grade of food processing, the daily intake  
58 of phytate can be as high as 4500 mg. On average, daily intake of phytate was estimated to be 2000-2600 mg  
59 for vegetarian diets as well as diets of inhabitants of rural areas in developing countries, and 150-1400 mg for  
60 mixed diets ??35, 37, 38]. Among the cooking treatments boiling appeared effective to reduce the phytate level,  
61 which could reduce as high as 20% of phytate [36,39]. However, the updated information on health benefits and  
62 adverse effects of phytate in foods is scant. Therefore, the objective of this review is to assess updated scientific  
63 information of the potential health benefits and adverse effects associated with phytate in foods.

## 64 3 II.

### 65 4 Adverse Health Effects of Phytate

66 The major concern about the presence of phytate in the diet is its negative effect on mineral uptake. Minerals of  
67 concern in this regard would include Zn<sup>2+</sup>, Fe<sup>2+/-3+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, and Cu<sup>2+</sup> [13,14], but also a negative  
68 effect on the nutritional value of protein [5,7]. a) Effect on mineral uptake Phytate forms complexes with numerous  
69 divalent and trivalent metal cations. Stability and solubility of the metal cation-phytate complexes depends on  
70 the individual cation, the pH-value, the phytate:cation molar ratio, and the presence of other compounds in the  
71 solution [15]. Phytate has six reactive phosphate groups and meets the criterion of a chelating agent. In fact,  
72 a cation can bind to one or more phosphate group of a single phytate molecule or bridge two or more phytate  
73 molecules [3,40]. Most phytates tend to be more soluble at lower compared to higher pH-values [16]. Solubility  
74 of phytates increase at pH-values lower than 5.5-6.0 with Ca<sup>2+</sup>, 7.2-8.0 with Mg<sup>2+</sup> and 4.3-4.5 with Zn<sup>2+</sup> as  
75 the counter ion. In contrast, ferric phytate is insoluble at pH values in the range of 1.0 to 3.5 at equimolar  
76 Fe<sup>3+</sup> : phytate ratios and solubility increases above pH 4 [17]. Another important fact is the synergistic effect  
77 of secondary cations, among which Ca<sup>2+</sup> has been most prominently mentioned [18,41]. Two cations may, when  
78 present simultaneously, act jointly to increase the quantity of phytate precipitation. For example, Ca<sup>2+</sup> enhanced  
79 the incorporation or adsorption of Zn<sup>2+</sup> into phytate by formation of a calcium-zinc phytate. The effect of Ca<sup>2+</sup>  
80 on the amount of Zn<sup>2+</sup> co-precipitating with phytate is dependent on the Zn<sup>2+</sup> : phytate molar ratio. For high  
81 Zn<sup>2+</sup> : phytate molar ratios, Ca<sup>2+</sup> displaces Zn<sup>2+</sup> from phytate binding sites and increases its solubility. The  
82 amount of free Zn<sup>2+</sup> is directly proportional to the Ca<sup>2+</sup>-concentration. For low Zn<sup>2+</sup>: phytate molar ratios,  
83 Ca<sup>2+</sup> potentiate the precipitation of Zn<sup>2+</sup> as phytate. Thus, higher levels of Ca<sup>2+</sup> result in a more extensive  
84 precipitation of the mixed phytates. Mg<sup>2+</sup> also has been shown in vitro to potentiate the precipitation of Zn<sup>2+</sup>  
85 in the presence of phytate, however, Mg<sup>2+</sup> has been found to exert a less pronounced effect on Zn<sup>2+</sup> solubility  
86 than Ca<sup>2+</sup> [18,42].

87 The knowledge about the interaction of partially phosphorylated myo-inositol phosphates with different cations  
88 is limited. Recent studies have shown that myoinositol pentakis-, tetrakis-and trisphosphates have a lower  
89 capacity to bind cations at pH-values ranging from 5.0 to 7.0 [19]. The capacity to bind cations was found to  
90 be a function of the number of phosphate groups on the myo-inositol ring. The cation-myoinositol phosphate  
91 complexes are more soluble as the number of phosphate groups decreases. There is also some evidence for  
92 weaker complexes when phosphate groups are removed from phytate. In addition, the binding affinity of cations  
93 to myo-inositol phosphates has been shown to be affected by the distribution of the phosphate residues on the  
94 myo-inositol ring.

95 The formation of insoluble metal cation-phytate complexes at physiological pH-values is regarded as the  
96 major reason for a poor mineral availability, because these complexes are essentially non-absorbable from the  
97 gastrointestinal tract. Most studies have shown an inverse relationship between phytate content and mineral  
98 availability, although there are great differences in the behaviour of individual minerals. Zn<sup>2+</sup> was reported to  
99 be the essential mineral most adversely affected by phytate [13,14]. Zn<sup>2+</sup> deficiency in humans was first reported  
100 in 1963 in Egyptian boys whose diets consisted mainly of bread and beans [20,43]. These patients, who were  
101 characterised by dwarfism and hypogonadism, showed a response to dietary Zn<sup>2+</sup> supplementation. It became  
102 accepted that the presence of phytate in plant-based foods is an important factor in the reduction of Zn<sup>2+</sup>  
103 absorption.

104 Phytate affects Zn<sup>2+</sup> absorption in a dosedependent manner. There is, however, some lack of agreement  
105 among studies, particularly with respect to specific foods and their individual components. In addition, phytate  
106 was shown not only to depress the Volume XIV Issue III Version I Year ( ) K availability of dietary Zn<sup>2+</sup>, but  
107 also to affect Zn<sup>2+</sup> homeostasis negatively [15]. A great deal of controversy exists regarding the effect of phytate  
108 on the availability of dietary iron [14,21]. Much of this controversy may be due to the low absorption of iron in  
109 general, the presence of different iron-phytates with different solubility, and the existence of two types of food  
110 iron, heme and nonheme iron.

111 Heme iron is better absorbed and its absorption is little affected by dietary factors; nonheme iron, however, is  
112 less easily absorbed, and its absorption is affected by other dietary factors. Since many human studies indicate  
113 that phytate has a very strong inhibitory effect on iron absorption, it is well accepted today, that phytate appears  
114 to be the major but not the only contributor to the reduction in iron availability in man [22,44]. Human studies  
115 also indicated that phytate inhibits Ca<sup>2+</sup> absorption, but the effect of phytate on Ca<sup>2+</sup> availability seems to  
116 be less pronounced compared to that on the availability of iron and particularly Zn<sup>2+</sup> [7,14]. This may be due  
117 to the relatively high Ca<sup>2+</sup> content of plant-based foods, the capability of the bacterial flora in the colon to  
118 dephosphorylate phytate and the fact, that Ca<sup>2+</sup> could be absorbed from the colon [23]. Relatively few studies  
119 have dealt with the effects of phytate on dietary Cu<sup>2+</sup>, Mn<sup>2+</sup> and Mg<sup>2+</sup> utilisation. Phytate has been shown  
120 to decrease their bioavailability in in vivo studies, but it appears that the effect of phytate on Cu<sup>2+</sup>, Mn<sup>2+</sup> and  
121 Mg<sup>2+</sup> availability is less marked than those for some other essential elements [13,14].

122 The fact that phytate phosphorus is poorly available to single stomached living beings including man was  
123 already demonstrated [24,25]. Phosphorus is absorbed as ortho-phosphate and therefore the utilisation of phytate-  
124 phosphorus by single-stomached living beings will largely depend on their capability to dephosphorylate phytate.  
125 It was already shown, that the human small intestine has only a very limited capability to hydrolyse phytate [26]  
126 due to the lack of endogenous phytate-degrading enzymes (phytases) and the limited microbial population in the  
127 upper part of the digestive tract.

## 128 5 b) Effect on protein digestibility

129 Phytate interactions with proteins are pHdependent [5,7]. At pH-values below the isoelectric point of the protein,  
130 the anionic phosphate groups of phytate bind strongly to the cationic groups of the protein to form insoluble  
131 complexes that dissolve only below pH 3.5. The  $\alpha$ -NH<sub>2</sub> terminal group, the  $\alpha$ -NH<sub>2</sub> of lysine, the imidazole group  
132 of histidine and guanidyl group of arginine have been implicated as protein binding sites for phytate at low pH-  
133 values. These low pH protein-phytate complexes are disrupted by the competitive action of multivalent cations.  
134 Above the isoelectric point of the protein, both protein and phytate have a negative charge, but in the presence  
135 of multivalent cations, however, soluble protein-cation-phytate complexes occur. The major protein binding site  
136 for the ternary complex appears to be the nonprotonated imidazole group of histidine, but the ionized carboxyl  
137 group of the protein are also suggested sites. These complexes may be disrupted by high ionic strength, high  
138 (pH> 10), and high concentrations of the chelating agents.

139 Phytate is known to form complexes with proteins at both acidic and alkaline pH [5]. This interaction  
140 may effect changes in protein structure that can decrease enzymatic activity, protein solubility and proteolytic  
141 digestibility. However, the significance of protein-phytate complexes in nutrition is still under scrutiny. Strong  
142 evidence exists that phytate-protein interactions negatively affect protein digestibility in vitro and the extent  
143 of this effect depends on the protein source [5]. A negative effect of phytate on the nutritive value of protein,  
144 however, was not clearly confirmed in studies with simple-stomached animals [7,45]. While some have suggested  
145 phytate does not affect protein digestibility, others have found an improvement in amino acid availability with  
146 decreasing levels of phytate. This difference may be at least partly due to the use of different protein sources.  
147 Of nutritional significance might be also the inhibition of digestive enzymes such as  $\alpha$ -amylase [46,47], lipase [48]  
148 or proteinases [49,51], such as pepsin, trypsin and chymotrypsin, by phytate as shown in in vitro studies. The  
149 inhibitory effect increases with the number of phosphate residues per myo-inositol molecule and the myo-inositol  
150 phosphate concentration. This inhibition may be due to the non-specific nature of phytateprotein.

151 interactions, the chelation of calcium ions which are essential for the activity of trypsin and  $\alpha$ -amylase, or the  
152 interaction with the substrates of these enzymes. The inhibition of proteases may be partly responsible for the  
153 reduced protein digestibility. Phytate has also been considered to inhibit  $\alpha$ -amylase in vivo as indicated by a  
154 negative relationship between phytate intake and blood glucose response [50,52].

## 155 6 III. Beneficial Health Effects of Phytate

156 In the view of the above results, the evidence seems overwhelming that high intakes of phytate can have adverse  
157 effects on mineral uptake in humans. In the last years, however, some novel metabolic effects of phytate or  
158 some of its degradation products have been recognised. Dietary phytate was reported to prevent kidney stone  
159 formation [8], protect against diabetes mellitus [9], caries [10], atherosclerosis and coronary heart disease [11] as  
160 well as against a variety of cancers [12]. The levels of phytate and its dephosphorylation products in urine,  
161 plasma and other biological fluids are fluctuating with ingestion or deprivation of phytate in the human diet [53].  
162 Therefore, the reduction in phytate intake in developed compared to developing countries might be one factor  
163 responsible for the increase in diseases typical for Western societies such as diabetes mellitus, renal lithiasis,

## 9 C) PHYTATE AND CANCER

---

164 cancer, atherosclerosis and coronary heart diseases. It was suggested that phytate exerts the beneficial effects in  
165 the gastrointestinal tract and other target tissues through its chelating ability, but additional mechanisms have  
166 also been discussed. Moreover, the potential beneficial effects of phytate in the prevention of severe poisoning  
167 should be considered.

168 One to two percent calcium phytate in the diet has been found to protect against dietary Pb<sup>2+</sup> in experimental  
169 animals and in human volunteers [54]. Furthermore, calcium phytate was capable of lowering blood Pb<sup>2+</sup> levels  
170 [7,55]. Thus, phytate seems to be a helpful means to counteract acute oral Pb<sup>2+</sup> toxicity. The effect of calcium  
171 phytate on acute Cd<sup>2+</sup> toxicity is still discussed controversially, but the majority of studies point to an improved  
172 Cd<sup>2+</sup> absorption in the presence of phytate [56,57]. This may result in a Cd<sup>2+</sup> accumulation in liver and kidney.

173 Diabetes mellitus is one of the most common nutrition-dependent diseases in Western society. It may be caused  
174 by hyper-caloric diets with high percentage of quickly available carbohydrates. Foods that result in low blood  
175 glucose response have been shown to have great nutritional significance in the prevention and management of  
176 diabetes mellitus. In this regard phytate-rich foods are of interest, since a negative relationship between phytate  
177 intake and blood glucose response was reported [9,52]. For example, phytate-enriched unleavened bread based  
178 on white flour reduced the in vitro starch digestibility besides flattening the glycemic response in five healthy  
179 volunteers in comparison with bread without phytate addition [52]. The in vitro reduction of starch digestion was  
180 positively correlated with the myo-inositol phosphate concentration and negatively with the number of phosphate  
181 groups on the myo-inositol ring. It has to be noted, that there are also studies which have not found an inhibition  
182 of  $\alpha$ -amylase and starch digestion by phytate.

### 183 7 a) Phytate and Coronary Heart Disease

184 Heart disease is a leading cause of death in Western countries, yet it is low in Japan and developing countries.  
185 Elevated plasma cholesterol or more specifically, elevated Low Density Lipoprotein cholesterol concentrations  
186 have been shown to be one of the risk factors. It has been proposed that dietary fibre or more specifically phytate,  
187 as a component of fibre, may influence the aetiology of heart disease [58]. Animal studies have demonstrated  
188 that dietary phytate supplementation resulted in significantly lowered serum cholesterol and triglyceride levels  
189 [11]. This effect was accompanied by decrease in serum zinc level and in zinc-copper ratio. Thus, the hypothesis  
190 was put forward that coronary heart disease is predominantly a disease of imbalance in regard to zinc and copper  
191 metabolism [59]. The hypothesis is also based on the production of hypercholesterolemia, which is a major  
192 factor in the aetiology of coronary heart disease, in rats fed a diet with a high ratio of zinc and copper [60].  
193 It was thought that excess zinc in the diets resulted in decreased copper uptake from the small intestine, since  
194 both minerals compete for common mucosal carrier systems. As phytate preferentially binds zinc rather than  
195 copper [61], it was presumed that phytate exerts its effect probably by decreasing zinc without affecting copper  
196 absorption. It should be pointed out that the support for the preventive role of phytate in heart disease is based  
197 only on a few animal and in vitro studies. Results from human studies are still lacking.

### 198 8 b) Phytate and Renal Lithiasis

199 The increase of renal stone incidence in northern Europe, North America, and Japan has been reported to be  
200 coincident with the industrial development of these countries, making dietary intake suspect. Epidemiological  
201 investigations found that there were substantial differences in renal stone incidences between white and black  
202 residents of South Africa [62]. The major dietary difference is that, compared to the white population, blacks  
203 consumed large amounts of foods containing high levels of fibre and phytate. Furthermore, a high phytate diet  
204 has been used effectively to treat hypercalciuria and renal stone formation in humans [7,63]. In recent years,  
205 research on phytate as a potent inhibitor of renal stone formation has been intensified [8,64,65]. By comparing a  
206 group of active calcium oxalate stone formers with healthy people it was demonstrated that urinary phytate was  
207 significantly lower for stone formers [8]. Therefore, in vitro and in vivo experiments as well as clinical studies  
208 clearly demonstrate that phytate plays an important role in preventing the formation of calcium oxalate and  
209 calcium phosphate crystals, which function as nuclei for kidney stone development. Because excretion of low  
210 phytate amounts in the urine was shown to be an important risk factor in the development of renal calculi and  
211 urinary excretion of phytate decreased significantly after intake of a phytate-free diet [64], the importance of  
212 dietary phytate in maintaining adequate urinary levels to permit effective crystallization inhibition of calcium  
213 salts and consequently preventing renal stone development was demonstrated.

### 214 9 c) Phytate and Cancer

215 The frequency of colonic cancer varies widely among human populations. It is a major cause of morbidity and  
216 mortality in Western society. The incidence of cancer, especially large intestinal cancer has been associated  
217 principally with dietary fat intake and is inversely related to the intake of dietary fibre. It was further suggested  
218 that the apparent relationship between fibre intake and rate of colonic cancer might arise Volume XIV Issue III  
219 Version I Year ( ) K from the fact that many fibre-rich foods contain large amounts of phytate and that this  
220 latter might be the critical protective element, since an inverse correlation between colon cancer and the intake  
221 of phytate-rich fibre foods, but not phytate-poor fibre foods has been shown [66]. A high phytate intake may  
222 also be an important factor in reducing the breast and prostate cancer mortality in man ??12]. Both in vivo

and in vitro experiments have shown striking anticancer effects of phytate. It was demonstrated that phytate is a broadspectrum antineoplastic agent, affecting different cells and tissue systems [67-74]. Phytate inhibited the growth of human cell lines such as leukaemic haematopoietic K-562 cell line [67,68], colon cancer HT-29 cell line [69], breast cancer cell lines [70], cervical cancer cell lines [71], prostate cancer cell lines [72,74], HepG2 hepatoma cell line [75], mesenchymal tumour cells [76], murine fibrosarcoma tumour cells [76], and rhabdomyosarcoma cells [77] in a dose-and time-dependent manner. However, cells from different origin have different sensitivity to phytate, suggesting that phytate may affect different cell types through different mechanisms of action. It was also demonstrated, that phytate has the potential to induce differentiation and maturation of malignant cells, which often results in reversion to the normal phenotype [68]. Phytate was further shown to increase differentiation of human colon carcinoma HT-29 cells [69,78], prostate cancer cells [72, 79], breast cancer cells [70], and rhabdo -myosarcoma cells [77]. The effectiveness of phytate as a cancer preventive agent was also shown in colon cancer induced in rats and mice. Phytate was effective in a dose-dependent manner given either before or after carcinogen administration.

The phytate-treated animals demonstrated a significantly lower tumour number and size. Studies using other experimental models showed that the antineoplastic properties of phytate were not restricted to the colon. Phytate significantly reduced experimental mammary carcinoma [79,80,83], skin papillomas [84], tumour size of metastatic fibrosarcoma and experimental lung metastases [76], growth of rhabdomyosarcoma cells [77], and regression of pre-existing liver cancers [75,85]. In addition synergistic cancer inhibition by phytate when combined with inositol was demonstrated in several cancers in experimental animals [76,81,82,86]. The in vivo experiments were performed either by adding phytate to the diet or by giving phytate via drinking water. Comparable or even stronger tumour inhibition was obtained with much lower concentrations of phytate when it was given in drinking water.

## 10 d) Mechanism of action

The mechanisms involved in the anticancer activity of phytate are not fully understood. It was suggested that phytate exerts the beneficial effects through its chelating ability, but additional mechanisms have also been discussed. Because several myo-inositol phosphates, including phytate, are present as intracellular molecules and because the second messenger D-myo-inositol (1,4,5) trisphosphate is involved in a range of cellular functions including cell proliferation via mobilising intracellular  $Ca^{2+}$  [87], phytate was proposed to exert its anticancer effect by affecting cell signalling mechanisms in mammalian cells [68]. About 35 of the 63 possible myo-inositol phosphate isomers were identified in different types of cells [87]. Depending on cell type, that is different receptors, phosphatases, and kinases, myo-inositol phosphates were linked with different physiological effects, such as basic cell functions like secretion and contraction as well as functions like cell division, cell differentiation and cell death. Therefore, practically every myo-inositol phosphate isomer extracellularly present and may have a metabolic effect by activating receptors, by being metabolised by phosphatases and kinases or by acting as inhibitors of these intracellular proteins after being internalised by cells. An effect of extracellular phytate on the concentration of several in-tracellular myo-inositol phosphate esters has already been demonstrated in human erythroleukemia cells [68]. Furthermore, it has been recently reported that highly negatively charged myoinositol polyphosphates can cross the plasma membrane and be internalised by cells. Myo-inositol hexakisphosphate was shown to enter HeLa cells followed by an intracellular dephosphorylation to partially phosphorylated myo-inositol phosphates [71], whereas myoinositol (1,3,4,5,6) pentakisphosphate showed a quite slow turnover after internalisation by SKOV-3 cells [88]. It was suggested that the anticancer activity of phytate is actually due to its dephosphorylation to lower forms. Myo-inositol (1,3,4,5, 6) pentakisphosphate inhibits specifically phosphatidylinositol 3-kinase, the enzyme catalysing the phosphorylation of inositol phospholipids at the D3 position to generate 3'-phosphorylated phosphoinositides [89], which act by recruiting specific signalling proteins to the plasma membrane [90]. Activation of phosphatidylinositol 3-kinase is a crucial step in some events leading to angiogenesis, the formation of a mature vasculature from a primitive vascular network [90,91]. Angiogenesis is involved in pathologies such as arteriosclerosis and tumour growth.

The observed anticancer effects of phytate could be mediated through several other mechanisms. Besides affecting tumour cells, phytate can act on a host by restoring its immune system. Phytate augments natural killer cell activity in vitro and normalises the carcinogen-induced depression of natural killer cell activity in vivo [7,92]. The anti-oxidant role of phytate is known and widely accepted. The 1,2,3-trisphosphate group in phytate has a conformation that uniquely provides a specific interaction with iron to completely inhibit its capability to catalyse hydroxyl radical formation from the Fenton reaction [93]. Chelation of iron to likelihood for iron-catalysed lipid peroxidation [94]. It is as yet uncertain whether physiological intakes of phytate can significantly improve the anti-oxidant status in man. The anticancer action of phytate may be further related to mineral binding ability or other positively charged compounds. By complexing  $Zn^{2+}$  and /or  $Mg^{2+}$ , phytate can affect activity of enzymes essential for DNA synthesis. Due to inhibition of starch digestion in the small intestine, undigested and unabsorbed starch will reach the colon where it may either contribute to faecal bulk and increase the dilution of potential carcinogens, or it may be fermented to short-chain fatty acids, which may subsequently decrease the colonic pH. The increased production of short-chain fatty acid, particularly butyrate, may play a protective role in colon carcinogenesis, because butyrate has been shown in several in vitro studies to be slow down the growth rate of human colorectal cancer cell lines [95,96]. Decreased pH has been suggested to be

## 12 V. ACKNOWLEDGEMENT

---

285 protective of colon carcinogenesis [97] by possibly causing alterations in the metabolic activity of colonic flora,  
286 altering bile acid metabolism and inhibiting ammonia production and absorption [98,99].

## 287 11 IV. Conclusion

288 Phytate is a principal chelating agent in cerealbased foods and is capable of impairing divalent mineral  
289 bioavailability through binding. Phytate has been recognized as an antinutrient due to its adverse effects. It  
290 reduced the bioavailability of minerals and caused growth inhibition. Many studies reported that phytate in  
291 plant foods binds essential dietary minerals in the digestive tract, making them unavailable for absorption. It  
292 forms insoluble complexes with Cu<sup>2+</sup>, Zn<sup>2+</sup>, Fe<sup>3+</sup> and Ca<sup>2+</sup> and as a result reduces the bioavailability of these  
293 essential minerals. Many animal feedings of plant food trials reveal that lower bioavailability of zinc, calcium,  
294 magnesium, phosphorus and iron are due to the presence of phytate. This is the main reason why phytate has  
295 been considered as an antinutrient.

296 Recent studies on phytate have shown its beneficial effects such as decrease in blood lipids, decrease in blood  
297 glucose response and cancer risk. In addition, a high phytate diet is used in the inhibition of dental caries and  
298 platelet aggregation, for the treatment of hypercalciuria and kidney stones in humans, and as antidote activity  
299 against acute lead poisoning. The beneficial health effects of phytate are more significant for populations in  
300 developed countries because of the higher incidence of cancer especially colon cancer which is associated with  
301 higher fat and lower fibre rich food intakes. Such populations generally do not suffer from mineral deficiencies.  
302 On the one hand, the chelating ability of phytate is considered to be a detriment to one's health whilst, on the  
303 other hand, many researchers consider this ability to bind with minerals as its most powerful asset. Such a variant  
304 topic signifies that more intensive studies are needed to obtain better insight into the mechanism responsible for  
305 the "friend or foe" challenge of phytate. Moreover, regardless of a series of researches on the positive and negative  
306 features of phytate, the information on the dosage for humans eliciting positive or negative effects is limited and  
307 the optimal dosage for clinical therapies is yet to be determined.

## 308 12 V. Acknowledgement

309 I acknowledge all the Authors I used as a references in preparing this review paper. The author have no conflict  
310 of interests.

Volume XIV Issue III Version I Year ( ) K<sup>1 2 3</sup>

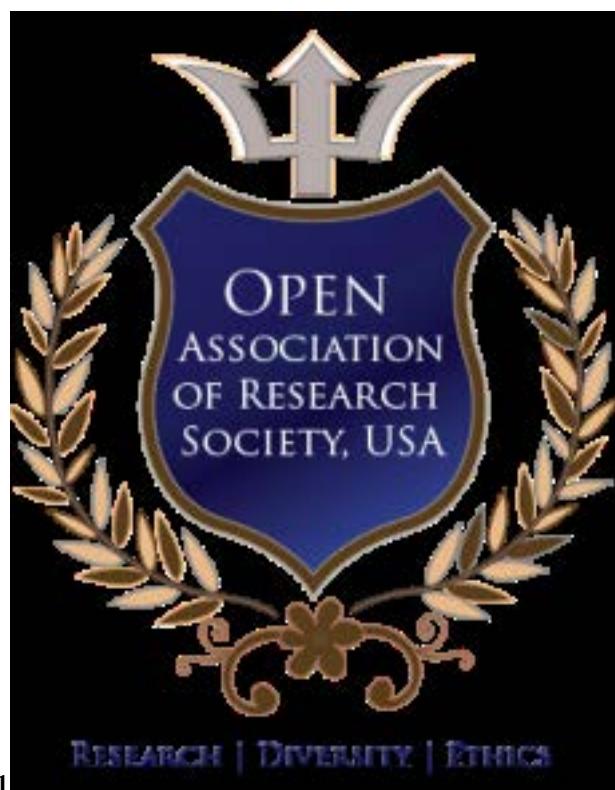



Figure 1: Figure 1 :

---

<sup>1</sup>© 2014 Global Journals Inc. (US)

<sup>2</sup>© 2014 Global Journals Inc. (US) Potential Health Benefits and Adverse Effects Associated with Phytate in Foods: A Review

<sup>3</sup>Potential Health Benefits and Adverse Effects Associated with Phytate in Foods: A Review



311 [ IUFoST Scientific Information Bulletin] , *IUFoST Scientific Information Bulletin*  
312 [Askar and El-Samahy ()] , A Askar , S K El-Samahy . *Abd El-Fadeel MG. Phytinsäure in Lebensmittel. Alimenta*  
313 1983. 22 p. .

314 [Shivapurkar et al. ()] 'A rapid dual organ rat carcinogenesis bioassay for evaluating the chemoprevention of  
315 breast and colon cancer'. N Shivapurkar , Z Tang , A Frost , O Alabaster . *Cancer Lett* 1996. 100 p. .

316 [Carmeliet ()] 'Angiogenesis in health and disease'. P Carmeliet . *Nat Med* 2003. 9 p. .

317 [Shamsuddin ()] 'Anti-cancer function of phytic acid'. A M Shamsuddin . *International Journal of Food Science*  
318 and *Technology* 2002. 37 (7) p. .

319 [Fox and Tao ()] 'Antinutritive effects of phytate and other phosphorylated derivatives'. Mrs Fox , S H Tao .  
320 *Nutritional Toxicology Vol III*, J N Hathcock (ed.) (New York) 1989. Academic Press. p. .

321 [Phillippy and Graf ()] 'Antioxidant functions of inositol 1,2,3-trisphosphate and inositol 1,2,3,6-  
322 tetrakisphosphate'. B Q Phillippy , E Graf . *Free Rad Biol Med* 1997. 22 p. .

323 [Graf and Eaton ()] 'Antioxidant functions of phytic acid'. E Graf , J W Eaton . *Free Rad Biol Med* 1990. 8 p. .

324 [Vucenik et al. ()] 'Antitumor activity of phytic acid (inositol hexaphosphate) in murine transplanted and  
325 metastatic fibrosarcoma, a pilot study'. I Vucenik , V J Tomazic , D Fabian , A M Shamsuddin . *Cancer Lett*  
326 1992. 65 p. .

327 [Siegenberg et al. ()] 'Ascorbic acid prevents the dosephytates on nonheme-iron absorption'. D Siegenberg , R D  
328 Baynes , T H Bothwell , B J Macfarlane , R D Lamparelli , N G Car , P Macphail , U Schmidt , A Tal , F  
329 Mayet . *Am J Clin Nutr* 1991. 53 p. .

330 [Persson et al. ()] 'Binding of Cu<sup>2+</sup>, Zn<sup>2+</sup>, and Cd<sup>2+</sup> to inositol tri-, tetra-, penta-, and hexaphosphates'. H  
331 Persson , M Türk , M Nyman , A S Sandberg . *J Agric Food Chem* 1998. 46 p. .

332 [Simpson and Wise ()] 'Binding of zinc and calcium to inositol phosphates (phytate) in vitro'. C J Simpson , A  
333 Wise . *Br J Nutr* 1990. 64 p. .

334 [Loewus (ed.) ()] *Biosynthesis of phytate in food grains and seeds*, F A Loewus . Reddy NR, Sathe SK (ed.) 2002.  
335 Boca Raton Florida: CRC Press. p. . (Food Phytates)

336 [Wise ()] 'Blood lead levels after chronic feeding to mice of lead acetate with calcium phytate in the diet'. A  
337 Wise . *Bull Environ Contam Toxicol* 1982. 29 p. .

338 [Wise and Gilburt ()] 'Caecal microbial phytate hydrolysis in the rat'. A Wise , D J Gilburt . *Human Nutr Food*  
339 *Sci Nutr* 1987. 41 p. .

340 [Selvam ()] 'Calcium oxalate stone disease: Role of lipid peroxidation and antioxidants'. R Selvam . *Urological*  
341 *Research* 2002. 30 (1) p. .

342 [Iufost ()] *CHEMICAL HAZARDS IN FOOD*, Iufost . 2008.

343 [Lantzsch et al. ()] 'Comparative study of phosphorus utilization from wheat, barley and corn diets by young  
344 rats and pigs'. H J Lantzsch , S Hillenbrand , S E Scheuermann , K H Menke . *J Anim Physiol Anim Nutr*  
345 1992. 67 p. .

346 [Vucenik et al. ()] 'Comparison of pure inositol hexaphosphate and high-bran diet in the prevention of DMBA-  
347 induced rat mammary carcinogenesis'. I Vucenik , G Y Yang , A M Shamsuddin . *Nutr Cancer* 1997. 28 p.  
348 .

349 [Bhandari and Kawabata ()] 'Cooking effects on oxalate, phytate, trypsin, cyanide and amylase inhibitors of wild  
350 yam tubers of Nepal'. M R Bhandari , J Kawabata . *Journal of Food Composition and Analysis* 2004. 19 p. .

351 [Klevay ()] 'Coronary heart disease: the Zinc/Copper hypothesis'. L M Klevay . *Am J Clin Nutr* 1975. 28 p. .

352 [Newmark and Lupton ()] 'Determinants and consequences of colonic luminal pH: implications for colon cancer'.  
353 H L Newmark , J R Lupton . *Nutr Cancer* 1990. 14 p. .

354 [Sandberg et al. ()] 'Dietary Aspergillus niger phytase increases iron absorption in humans'. A S Sandberg , L  
355 Rossander-Hulthén , M Türk . *J Nutr* 1996. 126 p. .

356 [Wise ()] 'Dietary factors determining the biological activities of phytate'. A Wise . *Nutr Abstr Rev Clin Nutr*  
357 1983. 53 p. .

358 [Grases et al. ()] 'Dietary myo-inositol hexaphosphate prevents dystrophic calcifications in soft tissues: a pilot  
359 study in Wistar rats'. F Grases , J Perello , R M Prieto , B M Simonet , J J Torres . *Life Sci* 2004. 75 p. .

360 [Graf and Eaton ()] 'Dietary suppression of colonic cancer. Fiber or phytate ?'. E Graf , J W Eaton . *Cancer*  
361 1985. 56 p. .

362 [Delliers et al. ()] 'Effect of inositol hexaphosphate (IP6) on human normal and leukaemic haematopoietic cells'.  
363 Lambertenghi Delliers , G Servida , F Fracchiola , N S Ricci , C Borsotti , C Colombo , G Soligo , D . *Br J*  
364 *Haematol* 2002. 117 p. .

365 [Sandström et al. ()] 'Effect of inositol hexaphosphate on retention of zinc and calcium from the human colon'.  
366 B Sandström , A Cederblad , B Stenquist , H Andersson . *Eur J Clin Nutr* 1990. 44 p. .

367 [Rimbach et al. ()] 'Effect of microbial phytase on cadmium accumulation in pigs'. G Rimbach , J Pallauf , O P  
368 Walz . *Arch Anim Nutr* 1996. 49 p. .

369 [Kaufman and Kleinberg ()] 'Effect of pH on calcium binding by phytic acid and its inositol phosphoric acid  
370 derivatives and on the solubility of their calcium salts'. H W Kaufman , I Kleinberg . *Archs Oral Biol* 1971.  
371 16 p. .

372 [Knuckles and Betschart ()] 'Effect of phytate and other myoinositol phosphate esters on alphaamylase digestion  
373 of starch'. B E Knuckles , A A Betschart . *J Food Sci* 1987. 52 p. .

374 [Knuckles ()] 'Effect of phytate and other myoinositol phosphate esters on lipase activity'. B E Knuckles . *J Food  
375 Sci* 1988. 53 p. .

376 [Deshpande and Damodaran ()] 'Effect of phytate on solubility, activity and conformation of trypsin and  
377 chymotrypsin'. S S Deshpande , S Damodaran . *J Food Sci* 1989. 54 p. .

378 [Inagawa et al. ()] 'Effect of phytic acid on the digestion of casein and soyabean protein with trypsin, pancreatin  
379 and pepsin'. J Inagawa , I Kiyosawa , T Nagasawa . *Nippon Eiyo Shokuryo Gakkaishi* 1987. 40 p. .

380 [Torre et al. ()] 'Effects of dietary fiber and phytic acid on mineral bioavailability'. M Torre , A R Rodriguez , F  
381 Saura-Calixto . *Crit Rev Food Sci Nutr* 1991. 1 p. .

382 [Shamsuddin et al. ()] 'Effects of inositol hexaphosphate on growth and differentiation in K-562 erythroleukemia  
383 cell line'. A M Shamsuddin , A Baten , N D Lalwani . *Cancer Lett* 1992. 64 p. .

384 [Deshpande and Cheryan ()] 'Effects of phytic acid, divalent cations, and their interactions on alphaamylase  
385 activity'. S S Deshpande , M Cheryan . *J Food Sci* 1984. 49 p. .

386 [Sakamoto et al. ()] 'Growth inhibition and differentiation of HT-29 cells in vitro by inositol hexaphosphate  
387 (phytic acid)'. K Sakamoto , G Venkatraman , A M Shamsuddin . *Carcinogenesis* 1993. 14 p. .

388 [Thornton ()] 'High colonic pH promotes colorectal cancer'. J R Thornton . *Lancet* 1981. 1 p. .

389 [Sandberg et al. ()] 'High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet'.  
390 A S Sandberg , T Larsen , B Sandström . *J Nutr* 1993. 123 p. .

391 [Klevay ()] 'Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested'. L M  
392 Klevay . *Am J Clin Nutr* 1973. 26 p. .

393 [Zi et al. ()] 'Impairment of erbB1 receptor and fluid-phase endocytosis and associated mitogenic signaling  
394 by inositol hexaphosphate in human prostate carcinoma DU145 cells'. X Zi , R P Singh , R Agarwal .  
395 *Carcinogenesis* 2000. 21 p. .

396 [Hawkins et al. ()] 'Inhibition of iron-catalyzed hydroxyl radical formation by inositol polyphosphate: a possible  
397 physiological function for myoinositol hexakisphosphate'. P T Hawkins , D R Poyner , T R Jackson , A J  
398 Letcher , D A Lander , R F Irvine . *Biochem J* 1993. 294 p. .

399 [Hirose et al. ()] 'Inhibition of mammary gland carcinogenesis by green tea catechins and other naturally  
400 occurring antioxidants in female Spargue-Dawley rats pretreated with 7,12-dimethylbenz(a)anthracene'. M  
401 Hirose , T Hoshiya , K Akagi , M Futakuchi , N Ito . *Cancer Lett* 1994. 83 p. .

402 [Vucenik et al. ()] 'Inhibition of rat mammary carcinogenesis by inositol hexaphosphate (phytic acid). A pilot  
403 study'. I Vucenik , K Sakamoto , M Bansal , A M Shamsuddin . *Cancer Lett* 1993. 75 p. .

404 [Ishikawa et al. ()] 'Inhibition of skin cancer by IP6 in vivo: Initiationpromotion model'. T Ishikawa , Y  
405 Nakatsuru , M Zarkovic , A M Shamsuddin . *Anticancer Res* 1999. 19 p. .

406 [Maffucci et al. ()] 'Inhibition of the phosphatidylinositol 3-Kinase/Akt pathway by inositol pentakisphosphate  
407 results in antiangiogenic and antitumor effects'. T Maffucci , E Piccolo , A Cumashi , M Iezzi , A M Riley ,  
408 A Saiardi , H Y Godage , C Rossi , M Broggini , S Iacobelli , Bvl Potter , P Innocenti , M Falasca . *Cancer  
409 Res* 2005. 65 p. .

410 [Singh and Krikorian ()] 'Inhibition of trypsin activity in vitro by phytate'. M Singh , A D Krikorian . *J Agric  
411 Food Chem* 1982. 30 p. .

412 [Shamsuddin et al. ()] 'Inositol and inositol hexaphosphate suppress cell proliferation and tumor formation in  
413 CD-1 mice'. A M Shamsuddin , A Ullah , A K Chakravarthy . *Carcinogenesis* 1989. 10 p. .

414 [Barker and Berggren ()] 'Inositol hexakisphosphate and beta-cell stimulus secretion coupling'. C J Barker , P  
415 Berggren . *Anticancer Research* 1999. 19 p. .

416 [Ferry et al. ()] 'Inositol hexakisphosphate blocks tumor cell growth by activating apoptotic machinery as well  
417 as by inhibiting the Akt/NFKB-mediated cell survival pathway'. S Ferry , M Matsuda , H Yoshida , M Hirata  
418 . *Carcinogenesis* 2002. 23 p. .

419 [Vucenik et al. ()] 'Inositol hexaphosphate and inositol inhibit DMBA-induced rat mammary cancer'. I Vucenik  
420 , G Y Yang , A M Shamsuddin . *Carcinogenesis* 1995. 16 p. .

421 [Shamsuddin and Yang ()] 'Inositol hexaphosphate inhibits growth and induces differentiation of PC-3 and  
422 apoptotic death of prostate carcinoma DU145 cells: modulation of CDKI-CDKcyclin and pRbrelated protein-  
423 E2F complexes'. A M Shamsuddin , G Y Yang . *Carcinogenesis* 2003. 24 p. .

424 [Cosgrove ()] 'Inositol Phosphates Their Chemistry'. D J Cosgrove . *Biochemistry and Physiology. In Studies in  
425 Inorganic Chemistry* 1980. Elsevier Scientific Publishing Company. 4 p. .

426 [Baten et al. ()] 'Inositol-phosphate-induced enhancement of natural killer cell activity correlates with tumor  
427 suppression'. A Baten , A Ullah , V J Tomazic , A M Shamsuddin . *Carcinogenesis* 1989. 10 p. .

428 [Oladimeji et al. ()] 'Investigation of the bioavailability of zinc and calcium from some tropical tubers'. M O  
429 Oladimeji , A A Akindahunsi , A F Okafor . *Nahrung* 2000. 44 p. .

430 [Vucenik et al. ()] 'IP6 in treatment of liver cancer. I. IP6 inhibits growth and reverses transformed phenotype  
431 in HepG2 human liver cancer cell line'. I Vucenik , K Tantivejkul , Z S Zhang , K E Cole , I Saeid , A M  
432 Shamsuddin . *Anticancer Res* 1998. 18 p. .

433 [Vucenik et al. ()] 'IP6 in treatment of liver cancer. II. Intra-tumoral injection of IP6 regresses pre-existing human  
434 liver cancer xenotransplanted in nude mice'. I Vucenik , Z S Zhang , A M Shamsuddin . *Anticancer Res* 1998.  
435 18 p. .

436 [Grases et al. ()] 'IP6) is a powerful agent preventing calcifications in biological fluids: usefulness in renal lithiasis  
437 treatment'. F Grases , A Costa-Bauzá , Phytate . *Anticancer Res* 1999. 19 p. .

438 [Yang and Shamsuddin ()] 'IP6-induced growth inhibition and differentiation of HT-29 human colon cancer cells:  
439 Involvement of intracellular inositol phosphates'. G Y Yang , A M Shamsuddin . *Anticancer Res* 1995. 15 p. .

440 [Brune et al. ()] 'Iron absorption from bread in humans: Inhibiting effects of cereal fiber, phytate and inositol  
441 phosphates with different numbers of phosphate groups'. M Brune , L Rossander-Hulthén , L Hallberg , A  
442 Gleerup , A S Sandberg . *J Nutr* 1992. 122 p. .

443 [Brune et al. ()] 'Iron absorption: no intestinal adaptation to a high-phytate diet'. M Brune , L Rossander , L  
444 Hallberg . *Am J Clin Nutr* 1989. 49 p. .

445 [Davidsson et al. ()] 'Iron bioavailability studied in infants: The influence of phytic acid and ascorbic acid in  
446 infant formulas based on soy isolate'. L Davidsson , P Galan , P Kastenmeyer , F Cherouvrier , M A Juillerat  
447 , S Hercberg , R F Hurrell . *Pediatr Res* 1994. 36 p. .

448 [Jariwalla et al. ()] 'Lowering of serum cholesterol and triglycerides and modulation of divalent cations by dietary  
449 phytate'. R J Jariwalla , R Sabin , S Lawson , Z S Herman . *J Appl Nutr* 1990. 42 p. .

450 [Walz and Pallauf ()] 'Microbial phytase combined with amino acid supplementation reduces P and N excretion  
451 of growing and finishing pigs without loss of performance'. O P Walz , J Pallauf . *Int J Food Sci Technol*  
452 2002. 37 p. .

453 [Lopez et al. ()] 'Minerals and phytic acid interactions: is it a real problem for human nutrition?'. H W Lopez ,  
454 F Leenhardt , C Coudray , C Remesy . *Int J Food Sci Technol* 2002. 37 p. .

455 [Vucenik et al. ()] 'Novel anticancer function of inositol hexaphosphate: inhibition of human rhabdomyosarcoma  
456 in vitro and in vivo'. I Vucenik , T Kalebic , K Tantivejkul , A M Shamsuddin . *Anticancer Res* 1998. 18 p. .

457 [Shamsuddin et al. ()] 'Novel anticancer functions of IP6: Growth inhibition and differentiation of human  
458 mammary cancer cell lines in vitro'. A M Shamsuddin , G Y Yang , I Vucenik . *Anticancer Res* 1996. 16  
459 p. .

460 [Golden ()] 'Nutrient requirements of moderately malnourished populations of children'. M Golden . *Food Nutr  
461 Bull* 2009.

462 [Potter ()] 'Overview of proposed mechanisms for the hypocholesterolemic effect of soy'. S M Potter . *J Nutr*  
463 1995. 125 p. .

464 [Iqbal et al. ()] 'Phytase activity in the human and rat small intestine'. T H Iqbal , K O Lewis , B T Cooper .  
465 *Gut* 1994. 35 p. .

466 [Greiner and Konietzny ()] 'Phytase for Food Application'. R Greiner , U Konietzny . *Food Technology.  
467 Biotechnology* 2006. 44 p. .

468 [Greiner and Konietzny ()] 'Phytate -an undesirable constituent of plant-based foods?'. R Greiner , U Konietzny  
469 , Jany K-D . *Journal für Ernährungsmedizin* 2006. 8 (3) p. .

470 [Hallberg et al. ()] 'Phytates and the inhibitory effect of bran on iron absorption in man'. L Hallberg , L Rossander  
471 , A B Skanberg . *Am J Clin Nutr* 1987. 45 p. .

472 [Reddy et al. ()] 'Phytates in legumes and cereals'. N R Reddy , S K Sathe , D K Salunkhe . *Adv Food Res* 1982.  
473 28 p. .

474 [Zhou and Jr ()] 'Phytic acid in health and disease'. J R Zhou , Erman Jr , JW . *Crit Rev Food Sci Nutr* 1995.  
475 35 p. .

476 [Cheryan ()] 'Phytic acid interactions in food systems'. M Cheryan . *Crit Rev Food Sci Nutr* 1980. 13 p. .

477 [Lönnerdal ()] 'Phytic acid-trace element (Zn, Cu, Mn) interactions'. B Lönnerdal . *Int J Food Sci Technol* 2002.

478 37 p. .

479 [Thompson ()] 'Potential health benefits and problems associated with antinutrients in foods'. L U Thompson .

480 *Food Res Int* 1993. 26 p. .

481 [Wise ()] 'Protective action of calcium phytate against acute lead toxicity in mice'. A Wise . *Bull Environm*

482 *Contam Toxicol* 1981. 27 p. .

483 [Basson et al. ()] 'Regulation of human colonic cell line proliferation and phenotype by sodium butyrate'. M D

484 Basson , G A Turowski , Z Rashid , F Hong , J A Madri . *Dig Dis Sci* 1996. 41 p. .

485 [Jackl et al. ()] 'Retention of cadmium in organs of the rat after a single dose of labelled cadmium-3-phytate'. G

486 A Jackl , W A Rambeck , W E Koumer . *Biol Trace Elem Res* 1985. 7 p. .

487 [Ohkawa et al. ()] 'Rice bran treatment for patients with hypercalciuric stones: Experimental and clinical

488 studies'. T Ohkawa , S Ebiduno , M Kitagawa , S Morimoto , Y Miyazaki , S Yasukawa . *J Urol* 1984.

489 132 p. .

490 [Jenab and Thompson ()] 'Role of phytic acid in cancer and other diseases'. M Jenab , L U Thompson . *Food*

491 *Phytates*, N R Reddy, S K Sathe (ed.) (Boca Raton, FL) 2002. CRC Press. 8 p. .

492 [Coradini et al. ()] 'Sodium butyrate modulates cell cyclerelated proteins in HT29 human colonic adenocarcinoma cells'. D Coradini , C Pellizzaro , D Marimpietri , G Abolafio , M G Daidone . *Cell Prolif* 2000. 33 p.

493 .

494 [Maffucci and Falasca ()] 'Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a

495 phosphoinositideprotein co-operative mechanism'. T Maffucci , M Falasca . *FEBS Lett* 2001. 506 p. .

496 [Sandberg ()] 'The effect of food processing on phytate hydrolysis and availability of iron and zinc'. A S Sandberg

497 . *Nutritional and Toxicological Consequences of Food Processing*, M Friedman (ed.) (New York) 1991. Plenum

498 Press. p. .

499 [Yoon et al. ()] 'The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response'. J H

500 Yoon , L U Thompson , Dja Jenkins . *Am J Clin Nutr* 1983. 38 p. .

501 [Gillooly et al. ()] 'The effects of organic acids, phytates and polyphenols on the absorption of iron from

502 vegetables'. M Gillooly , T H Bothwell , J D Torrance , A P Macphail , D P Derman , W R Bezwoda ,

503 W Mills , R W Charlton , F Mayet . *Br J Nutr* 1983. 49 p. .

504 [Mallett et al. ()] 'The influence of incubation pH on the activity of rat and human gut flora enzymes'. A K

505 Mallett , C A Bearne , I R Rowland . *J Appl Bacteriol* 1989. 66 p. .

506 [Foster et al. ()] 'The phosphoinositide (PI) 3-kinase family'. F M Foster , C J Traer , S M Abrahamm , M J Fry

507 . *J Cell Sci* 2003. 116 p. .

508 [Davis and Warrington ()] 'The phytic acid, mineral, trace element, protein and moisture content of UK Asian

509 immigrant foods'. N T Davis , S Warrington . *Human Nutrition and Applied Nutrition* 1986. 40 p. .

510 [Oberleas (ed.) ()] *The role of phytate in zinc bioavailability and homeostasis*, D Oberleas . Inglett GE (ed.) 1983.

511 Washington DC: American Chemical Society. p. . (Nutritional bioavailability of zinc)

512 [Shears ()] 'The versatility of inositol phosphates as cellular signals'. S B Shears . *Biochim Biophys Acta* 1998.

513 1436 p. .

514 [Grases et al. ()] 'Urinary phytate in calcium oxalate stones formers and healthy people'. F Grases , J G March

515 , R M Prieto , B M Simonet , A Costa-Bauzá , A Garcia-Raja , A Conte . *Scand J Urol Nephrol* 2000. 34 p. .

516 [Grases et al. ()] 'Variation of InsP4, InsP5 and InsP6 levels in tissues and biological fluids depending on dietary

517 phytate'. F Grases , B M Simonet , R M Prieto , J G March . *J Nutr Biochem* 2001. 12 p. .

518 [Weaver et al. (ed.) ()] C M Weaver , S Kannan , Phytate . *Food phytates*, N R Reddy, S K Sathe (ed.) (Boca

519 Raton, FL) 2002. CRC Press. p. .

520 [Prasad et al. ()] 'Zinc metabolism in patients with the syndrome of iron deficiency anaemia, hep-

521 atosplenomegaly, dwarfism, and hypogonadism'. A S Prasad , A MialeJr , Z Farid , H H Sandstead , A

522 R Schulert . *J Lab Clin Med* 1963. 61 p. .

523 R Schulert . *J Lab Clin Med* 1963. 61 p. .