

1 Strictly as per the compliance and regulations of

2 Roberta Curia¹

3 ¹ Gamaleya Research Institute for Epidemiology and Microbiology

4 Received: 16 December 2013 Accepted: 31 December 2013 Published: 15 January 2014

5

6 **Abstract**

7 Electron microscopy is useful in studying the interactions between *S. aureus* and polyurethane
8 nanoparticles as good models for bacteria-polymer relations. A valuable ensemble of
9 investigation tools allows not only to understand the cellular dynamics, but provides
10 information about nanoparticles delivery (to host cells and consequently to tissues and organs)
11 as well. Analysis of the electron images can bring better comprehension of processes such as
12 adhesion, in response to the reciprocal attraction between nanoparticles and cells, and
13 endocytosis. Understanding the course of nanoparticles, we can suppose the existence of
14 reversible mechanisms (exocytosis), and clear up how bacteria-host cells interactions work.

15

16 **Index terms**— *S. aureus*, nanoparticles, electron microscopy, polyurethane, biodestruction, endocytosis,
17 bacteria-host cell interaction, toxicology.

18 **1 Introduction**

19 Electron microscopy is a powerful mean through which it is possible to gain information at a cellular and sub-cellular
20 level. The elements brought out by electron microscopy are not only about morphology, but regard the cellular
21 dynamics and the roles of several structures as well. Images obtained on a Transmission Electron Microscope
22 (TEM) can give valuable details about the interactions that occur at a cellular scale. Samples prepared and
23 fixed, according to different protocols and procedures, are observed with the TEM, in TEM or STEM (Scanning
24 Transmission Electron Microscope) mode. During the analysis different data collection techniques such as Bright
25 Field (BF) and Dark Field (DF) are applied, each technique highlighting different details of the same sample's area
26 E After the acquisition of the images, the main purpose is to identify the distinct structures in an unambiguous
27 and objective way, possibly automating the whole process. This could be obtained processing the micrographs
28 with an image editing software, combining personal skills and software tools. It would mean being able to increase
29 on a large scale the number of events examined in reasonable time, favouring the statistics which generally are
30 complicated to get in transmission microscopy. Unfortunately this approach has severe limitations since most of
31 the times the image background prevents the setting of parameters, key of an automatic recognition, so that all
32 the work relies on personal abilities.

33 In this work we would like to show how electron microscopy is a valid tool to investigate the in vitro interactions
34 between bacteria and polymeric materials (polyurethane).

35 *S. aureus* is a Gram positive bacterium, normally present in the oral cavity, able to operate biodestruction over
36 polyurethane prostheses [Didenko et al., 2012]. In vitro experiments show that the incubation of polyurethane
37 with *S. aureus* results in the formation of a biofilm [Arciola et al., 2012] and, in the last stage, in the biodestruction
38 of the polymeric material [Didenko et al., 2012; Howard, 2011; Zachinyaev et al., 2009]. The starting point of
39 biofilm formation is the bacterial attachment to the polyurethane surface therefore there is a shortcoming of
40 nutrients; moreover there is an increment of the environment acidity, due to the bacterial metabolic activity.
41 Hence the polyurethane is weakened and bacteria attack the plastic material, already deteriorated by the low
42 pH of the environment, in order to get some source of nourishment. The polyurethane degradation operated by
43 *S. aureus* implies the detachment of little scraps of material that range from micrometers to nanometers. This
44 has been demonstrated removing the biofilm from the polyurethane in a FIB/SEM (Focused Ion Beam/Scanning

5 RESULTS

45 Electron Microscope) through ultrasounds and analyzing the polymeric surface [Didenko et al., 2012]. It appears
46 deeply modified, micro-or nano-patterned, and looks lacy.

47 Through electron microscopy we were able to investigate that *S. aureus* can internalize the nanosized debris
48 of polyurethane (less than 10 nm). The internalization process of the polymeric material into bacterial cells
49 occurs through endocytosis following a general scheme. In literature several types of internalization processes
50 are discussed with different names, but globally they present the same general features [Doherty and McMahon,
51 2009; Iversen et al., 2011]. Thanks to the electron images we collected shots of the several steps: approach of
52 nanoparticles to the bacterial cell, formation of a vesicle for the absorption of nanoparticles and englobing of
53 nanoparticles in vesicles inside the bacterial cell. Hence the issue of the toxicity of nanosized polyurethane raises
54 [Revell, 2006; Gatti, 2004; Hoet et al., 2004], in fact the same material in the bulk form is not toxic [Howard,
55 2011]. Electron images point out that, as a consequence of the endocytic process, polyurethane nanoparticles
56 accumulate into bacterial cells.

57 With this work we would like to draw attention to the problem of the material toxicity, since it has been
58 demonstrated the actual uptake and storage of polyurethane nanoparticles by *S. aureus*. Moreover, considering
59 the possible dynamics of bacteria-host cells interactions, we can suggest mechanisms of nanoparticles spreading
60 from bacteria to host cells and therefore to an entire organism.

61 2 II.

62 3 Materials and Methods

63 Bacterial cells (*S. aureus*) were isolated from a patient suffering from a periodontal disease. A part of them was
64 incubated in a nutrient broth as a control sample; the remaining part was incubated in a broth with polyurethane.
65 The polymeric material, provided by Dentalur Russia, had different types of surfaces. The role of the polyurethane
66 roughness is discussed in instrument for both the TEM and STEM modes, we were able to obtain two images of
67 the very sample' spot, therefore we could analyze the TEM image and the STEM one, capturing the several details
68 that the two modes bring out. Moreover the images were collected with two different techniques: Bright Field
69 (BF) and High Angle Annular Dark Field (HAADF). These techniques differ from the way in which electrons
70 hit the sample and build up the images (Fig. ??). In BF modality an aperture lets only the direct beam hit the
71 sample, blocking the scattered electrons; as a result in BF images thin areas appear brighter than the thicker
72 ones. When an electron beam hits an ultrathin sample, most of the electrons are scattered into high angles or
73 backwards. In HAADF modality annular detectors (Fig. 2) collect the scattered electrons up to angles higher
74 than 50 mrad. In HAADF images denser zones (objects) which have a higher atomic number Z and thus scatter
75 stronger, appear bright, whereas thinner areas result darker than the thicker ones ??Krumreich]. With these
76 different techniques it is possible to obtain images with better contrast and resolution.

77 It is important to note that, under the same conditions of signal and detector, in STEM the resolution is a ??
78 factor better than in TEM. Moreover, as no lenses are used to form STEM DF images, they are less noisy than
79 TEM DF ones [Utsunomiya and ??wing, 2003].

80 The images acquired have been processed with GIMP [available from <http://www.gimp.org>], an open source
81 image editing software. Our aim was to locate nanoparticles and bacterial internal structures. We worked mostly
82 balancing the contrasts and enhancing the edges, unfortunately, in our case GIMP did not resulted as efficient
83 as a visual analysis, since the software was effective only in the identification of structures provided with large
84 contours. Nanoparticles' edges detection cannot be faced with GIMP and we were able to identify only the
85 membranous vesicles.

86 4 III.

87 5 Results

88 Thanks to the electron images we were able to capture some of the events that occur in the bacterial cell and
89 its surroundings in presence of polymers. Fig. ?? is a TEM BF image of a cell of *S. aureus* after a long term
90 in vitro incubation with polyurethane. It sums up the power of electron microscopy that, with only one image,
91 can bring out a lot of information. In this image it is possible to observe polymeric nanoparticles (derived from
92 biodestruction) out of the cell, on the cell wall and inside the cell, enclosed in vesicles. This shows which could
93 be the possible course of nanoparticles from out the cell to inside the bacterium. In this shot it is also visible a
94 ruffle, a possible step in the uptake process [Doherty and McMahon, 2009], in which are present vesicles loaded
95 with nanoparticles. It is evident that vesicles can contain one or more nanoparticles. From the image we can
96 deduce that not all the nanoparticles around the cell (whose size can be as large as 100 nm, as seen in Didenko et
97 al., 2013) enter *S. aureus*, but only those which measure less than 10 nm. They are enveloped in vesicles whose
98 diameters and membrane are approximately 30 nm and 5 nm thick, respectively.

99 Polyurethane nanoparticles have higher electron density than the cell biological components, so they appear
100 darker than the surrounding medium in BF images (Figs. ??, In Fig. ?? it is possible to single the vesicles out,
101 spotting them both in the ruffle and in the cell. We obtained this images working with GIMP on the original
102 one, balancing contrasts and enhancing the contours of the objects, within the bacterial cell, we were interested
103 into (vesicles).

104 Looking at Figs. ?? and 4 in detail, one can clearly see that vesicles follow a line, as they were in a row driven
105 by a supporting structure. In these images it is not evident what is carrying the vesicles, but the way in which
106 they are disposed make us think that it is a cytoskeletal-like structure, probably a microtubule, whose existence
107 and role are suggested in Amos et al., 2004 and in Cabeen and Jacobs-Wagner, 2007.

108 Moreover this points out the presence of a continuum of vesicles from the ruffle to the whole cell, strengthening
109 the theses that the ruffle derives from an uptake process stimulated by the nanoparticles, and that the bacterial
110 cytoskeleton is actually involved in the capture and internalization of the nanomaterial. The scheme of the
111 vesicles' position is clarified in Fig. 5.

112 In the scheme displayed in Fig. 5 we have underlined the presence of the EPS matrix that has an important
113 role in the approach of nanoparticles to the cell, in the nanoparticles coating (protein corona), and in the
114 internalization process, where the ruffle enters in connection with the matrix during endocytosis. Global Journal
115 of A portion of the same sample as in Fig. ??, with better magnification, is shown in Fig. ?? (TEM BF) and
116 Fig. ?? (STEM HAADF). Fig. ?? gives a focus on the vesicles that go from the ruffle and across the cell, lying
117 in a row; Fig. ?? offers a better possibility to observe the vesicles in the ruffle, showing in the meantime the clear
118 contours of the vesicles inside the cell.

119 Figure ?? : TEM BF image of a portion of the same sample as in Fig. ??, with higher magnification. Details
120 of a ruffle and nanoparticle loaded vesicles are present Figs. 7 and 9 show our attempts to improve the visibility
121 of internal structures with the use of GIMP. While in these images it is possible to identify the improved edges
122 of some of the vesicles present, we can state that the result as a whole is not satisfying. In fact in this case the
123 tools of GIMP do not allow to improve the identification of the internal structures, whereas a visual inspection
124 is more efficient. The limits of the use of editing image software are proved not only in Figs. 7 and 9 where it is
125 impossible to clearly identify all the bacterial structures of interest, but in all of the other images as well, since
126 GIMP allowed to focus only on objects provided with large contours (vesicles) and not on nanoparticles where
127 edge detection is not feasible.

128 The above mentioned limits prove that in our research an automatic process for structures' recognition is far
129 from reach.

130 Figure ?? : Same image as in Fig. ?? rielaborated with GIMP in order to better display internal vesicles
131 Figure ?? : STEM HAADF image of a portion of the same sample as in Fig. ??, with higher magnification.
132 Details of a ruffle and nanoparticle loaded vesicles are present

133 6 Global Journal of

134 7 Discussion

135 The images in the previous section prove the importance of electron microscopy. Electron images suggest the
136 possible endocytic pathway that nanoparticles take from outside the bacterium to the interior of the cell. Fig.
137 ?? is in a fixed time and helps us to understand the space-time cellular dynamics. It is notable that from a single
138 image we get information about the whole course of the polymeric material. The first step is the approaching
139 of nanosized particles to the bacterial cell. Polyurethane nanoparticles can be positively or negatively charged,
140 as well as neutral [Urquhart et al., 1995; Watanabe et al., 2003]. In all cases, the proximity of nanoparticles to
141 the bacterial membrane brings into play electromagnetic forces. In fact, when approached by charged or neutral
142 nanoparticles, the membrane high electric field (up to 10GV/m) interacts with permanent nanoparticle dipole
143 moments (if present) and/or induces electrical dipoles [Korobeynikov et al., 2002; Pekker and Shneider, 2014;
144 Fröhlich, 1975; Davydov, 1982; Del Giudice et al., 1985; Del Giudice et al., 1986; Askar'yan, 1962; Ho et al.,
145 1994]. Moreover nanoparticles can be free or enveloped by a protein corona (not visible in our images). The
146 corona is a protein cover, probably derived from the EPS matrix, which encloses nanoparticles [Lynch et al.,
147 2009; Lundqvist et al., 2008; Walczyk et al., 2010; Wang et al., 2013]. Thus the protein corona, while covering
148 its inner load to the bacterial cell, modifies the electromagnetic parameters of the nanoparticlesbacteria system.
149 The role of the EPS matrix, consequently, is not limited to holding together and protecting bacterial cells, but
150 it plays a fundamental role in the approach of nanoparticles to the cell and in the nanoparticles coating (protein
151 corona).

152 The following step is the uptake of nanoparticles from *S. aureus*. This process occurs through endocytosis
153 [Doherty and McMahon, 2009; Iversen et al., 2011; Jermy, 2010] and starts with the folding of the plasma
154 membrane: the bacterial membrane ruffles and the cell alters its connections with the EPS matrix. Subsequent
155 events consist in the formation of membranous vesicles that surround the polymeric material and if present the
156 protein corona as well, and in the actual internalization of the polyurethane into the bacterial cell. The action of
157 the cytoskeleton components backs the whole endocytic pathway [Skruzny et al., 2012] from the ruffling of the
158 membrane to the formation and absorption of vesicles. *S. aureus* is able to englobe the foreign nano-material as
159 a whole, incorporating it into vesicles. The existence of a bacterial cytoskeleton [Amos et al., 2004; Cabeen and
160 Jacobs-Wagner, 2007] and its important role are supported and underlined by electron images that show vesicles
161 laying in a row, on a linear structure that could be a microtubule. Therefore electron microscopy illustrates
162 not only the dynamics of the internalization processes, but provides information useful in the understanding
163 of the highly controversial issues of bacterial cytoskeleton- nanoparticles that adhered to its outer membrane
164 (nanoparticles with or without a protein corona, not enclosed in vesicles), can free nanoparticles without vesicles

7 DISCUSSION

165 through exocytosis, or it can die loosening all its internal structures, vesicles filled with nanoparticles included
166 [Curia et al., 2013, Curia et al., 2014]. The question of the existence of exocytic processes is under debate,
167 as some researchers affirm that export processes are absent while others assume that internalization can be a
168 reversible process [Dombu et al., 2010;Salvati et al., 2011].

169 The dissemination of nanoparticles implies that, due to the infection spreading, numerous organs (even far
170 from one another and not directly exposed to the nanoparticles contamination) are invaded by nanoparticles
171 [Teterycz et al., 2010]. Moreover, nanoparticles released in the body by the bacteria-host cells chain (Fig. ??1)
172 can aggregate [Kasemets et al., 2013] and the possible toxic material could reach high local concentrations,
173 while the average concentration values are below the threshold levels. In the light of this, we suggest that the
174 dosimetry levels of nanoparticles need to be rediscussed. ne targets such as tissues and organs, and able to
175 provoke infections. Its pathogenicity is even worse when it is associated with resistance to antibiotics ??Lowy,
176 2000; ??alani, 2014;Sansonetti, 1993].

177 The uptake of nanoparticles by *S. aureus* has implications in the toxicological field [Curia et al., 2013].

178 First of all because the nanoparticles we are taking into consideration are not engineered [Kettiger et
179 al., 2013;Simkó and Mattsson, 2010], in fact we are dealing with nanoparticles derived from the bacterial
180 action against polymers (in our case polyurethane dental prostheses). It has already been assessed that bulk
181 polyurethane is not toxic [Howard, 2011], but it is known that the properties of the same material change when
182 its size approaches the nanoscale. The higher surface/volume ratio of nanoparticles compared to that of bigger
183 particles, makes nanoparticles more readily absorbable by a cell [Revell, 2006;Gatti, 2004;Hoet et al., 2004].

184 Moreover the uptake of nanoparticles does not affect the bacterial viability, so that *S. aureus* continues its
185 course undisturbed ??Didenko et al., Electron images not only show bacterial internal structures and outline
186 how they are involved in cellular dynamics, but prove the actual existence of nanoparticles uptake processes as
187 well. All these information help to suggest unexplored paths about the nanoparticles delivery resulting from the
188 interplay between *S. aureus* and host cells.

189 Being polyurethane a material commonly used in medical devices, it is of primary importance to deeply
190 understand the mechanisms of the bacteria-host cells interactions during infectious processes, a threat always
191 associated with implants and common to different bacteria and fungi [Teterycz et al., 2010]. While electron
192 microscopy manages to answer a few questions clearing up some of the points, it raises important issues about the
193 dissemination of nanoparticles to organs not directly exposed to the menace, and about the potential toxicological
194 concentration that nanoparticles can reach locally, at cellular level, bringing dosimetry up for discussion. Electron
Microscopy Furthers the Investigation of Bacteria-Nanoparticles Interactions Sub-Cellular ^{1 2}

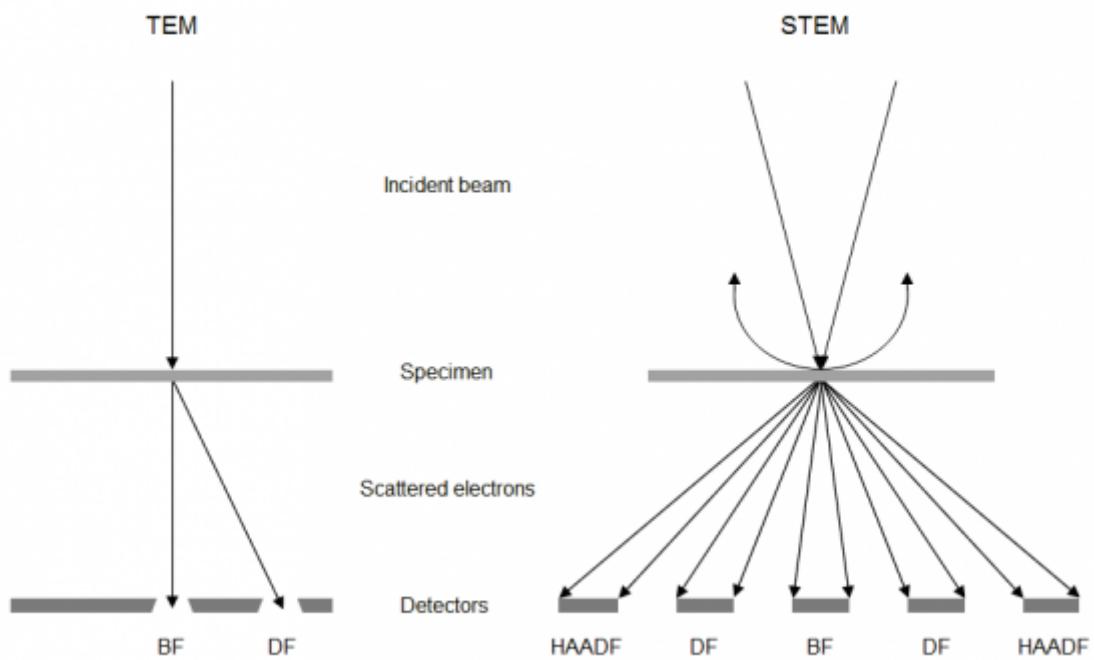
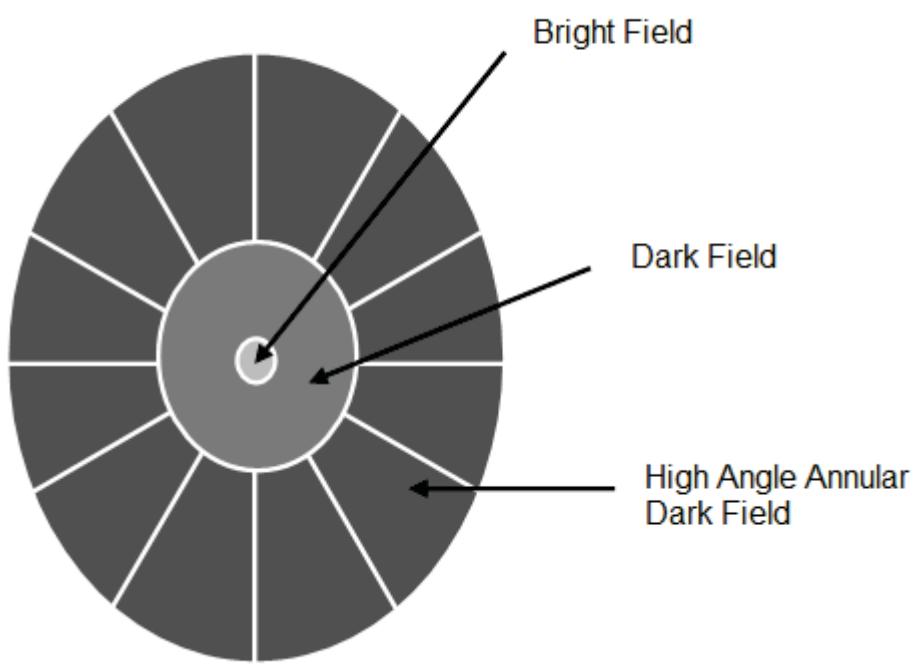


Figure 1: [

195

¹Electron Microscopy Furthers the Investigation of Bacteria-Nanoparticles Interactions Sub-Cellular
²© 2014 Global Journals Inc. (US)



2

Figure 2: Figure 2 :

Figure 3:

34

Figure 4: Figure 3 :Figure 4 :

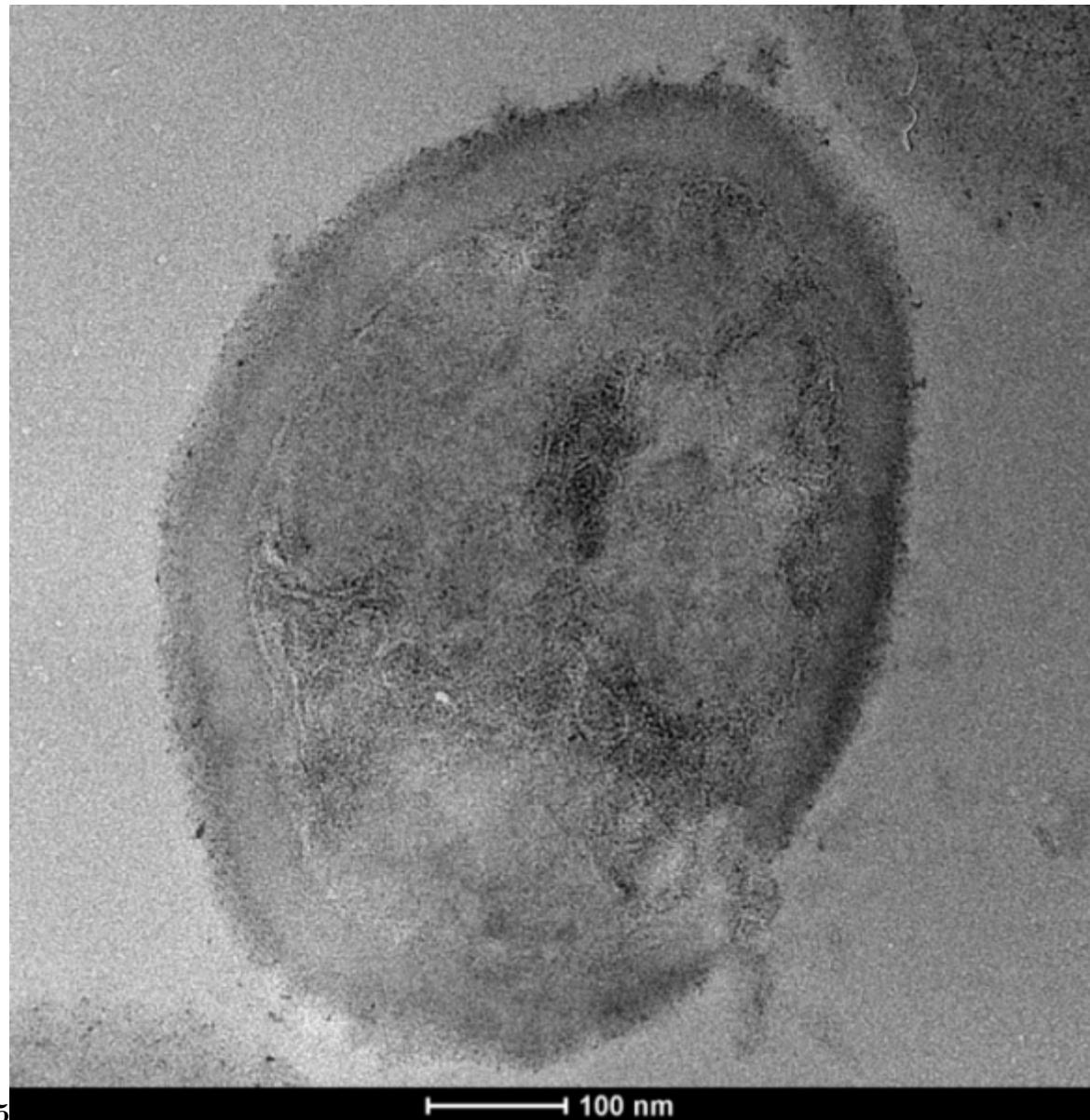


Figure 5: Figure 5 :

7 DISCUSSION

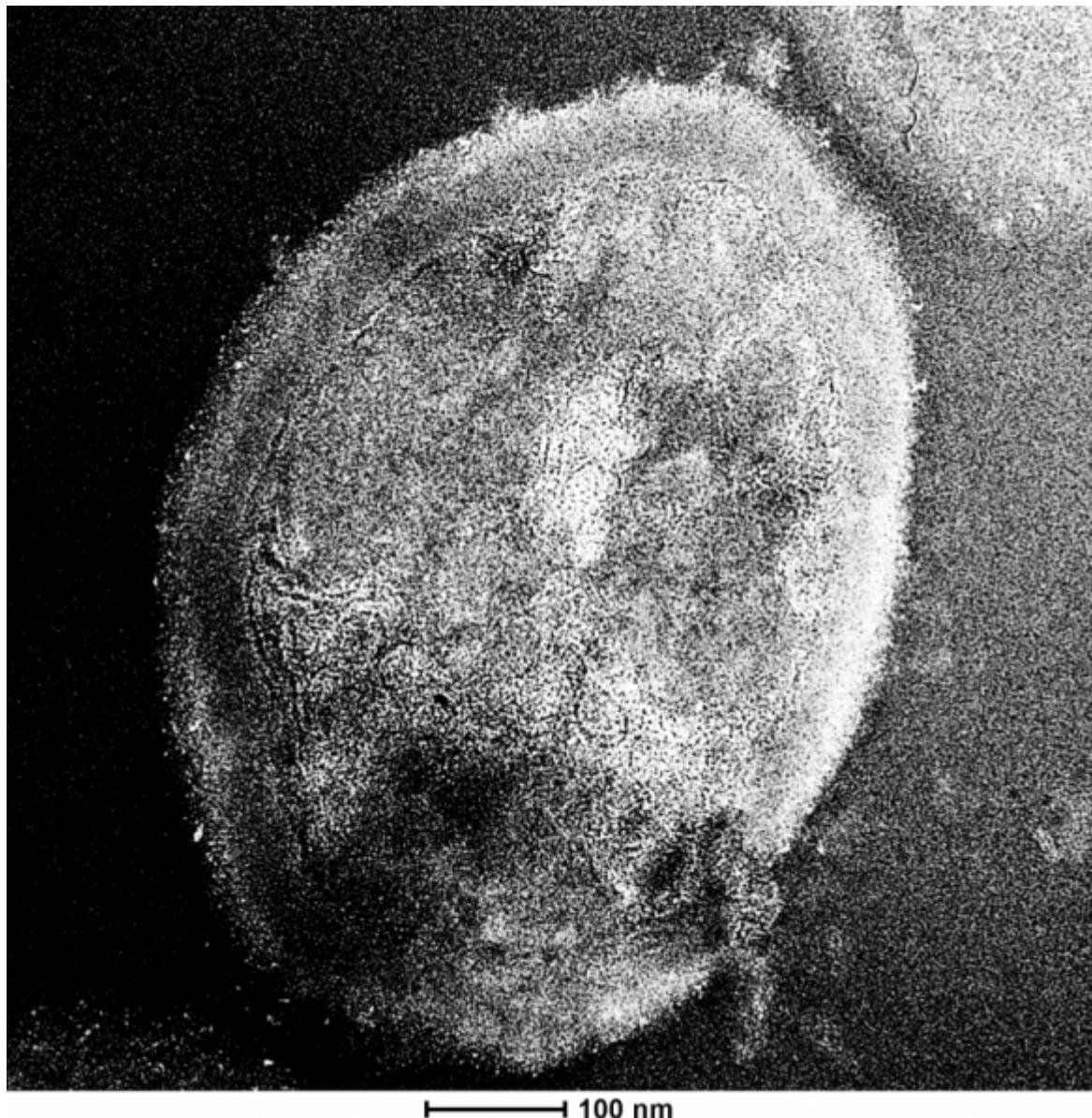
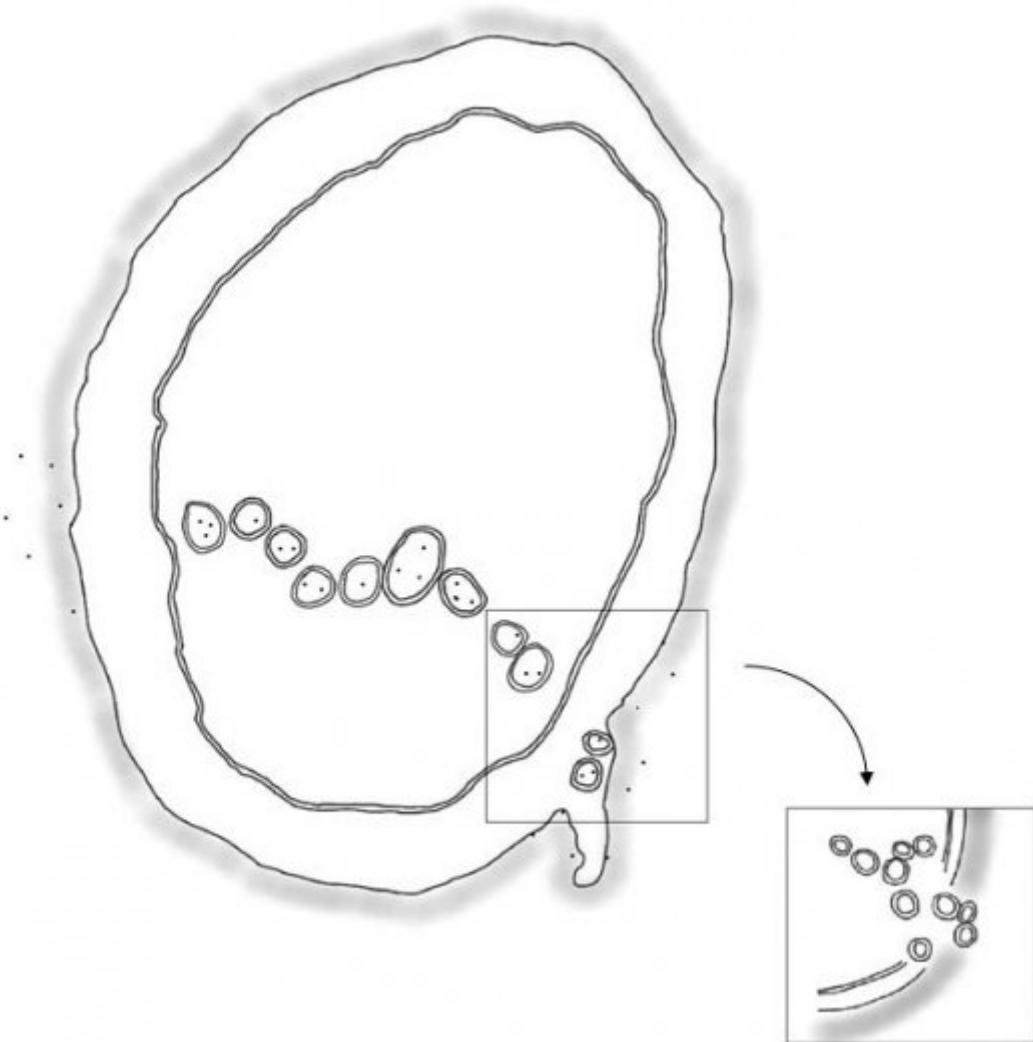



Figure 6:

9

Figure 7: Figure 9 :

1011

Figure 8: Figure 10 :Figure 11 :

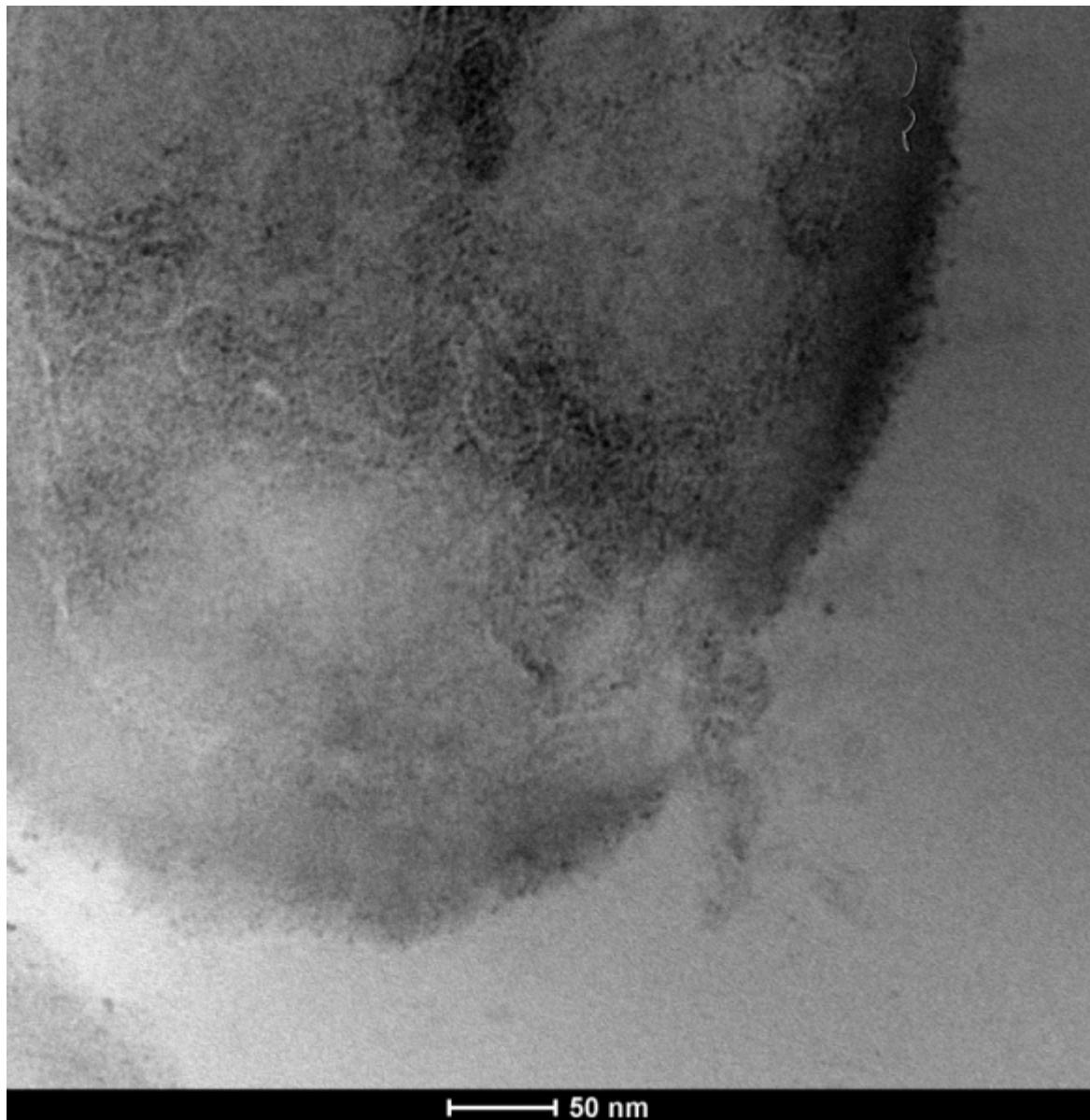


Figure 9:

1 50 nm

Figure 10:

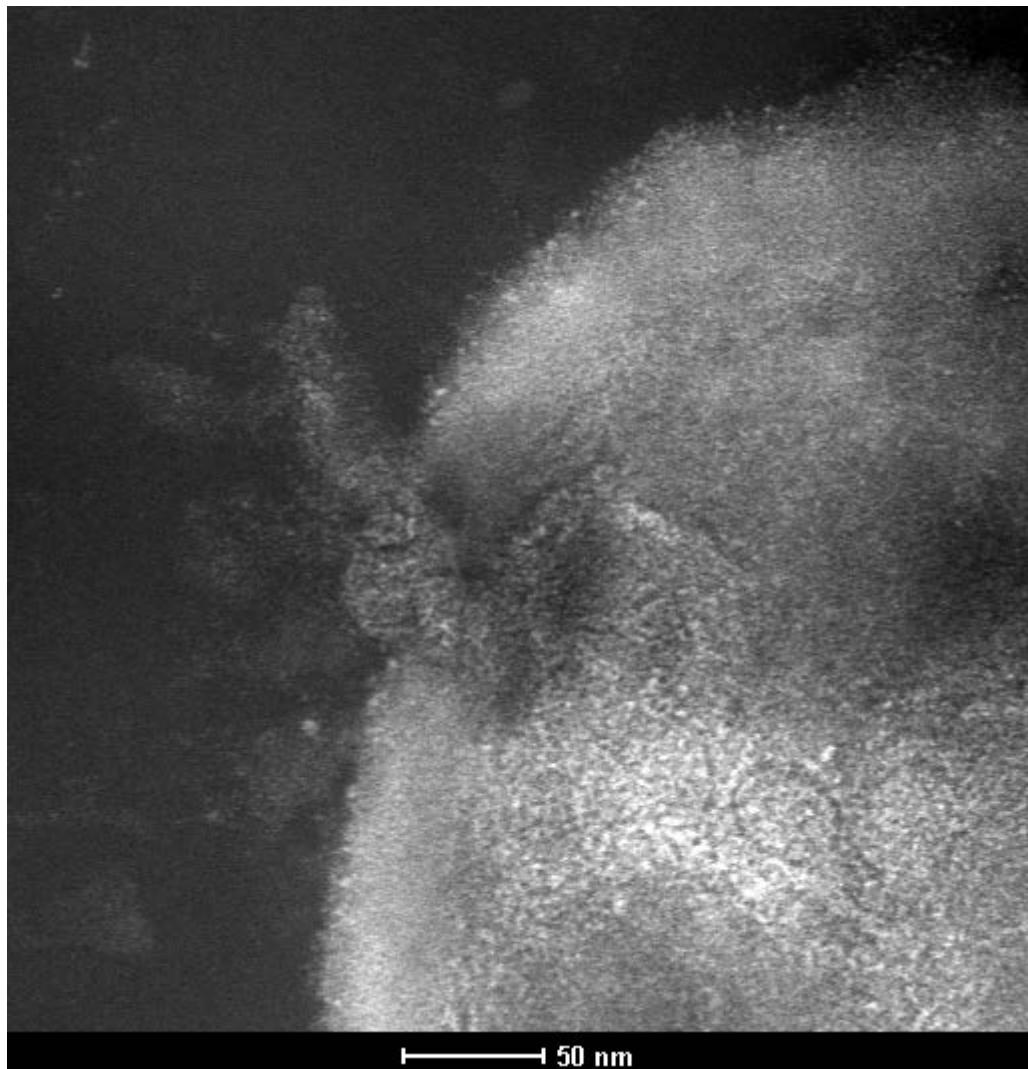


Figure 11:

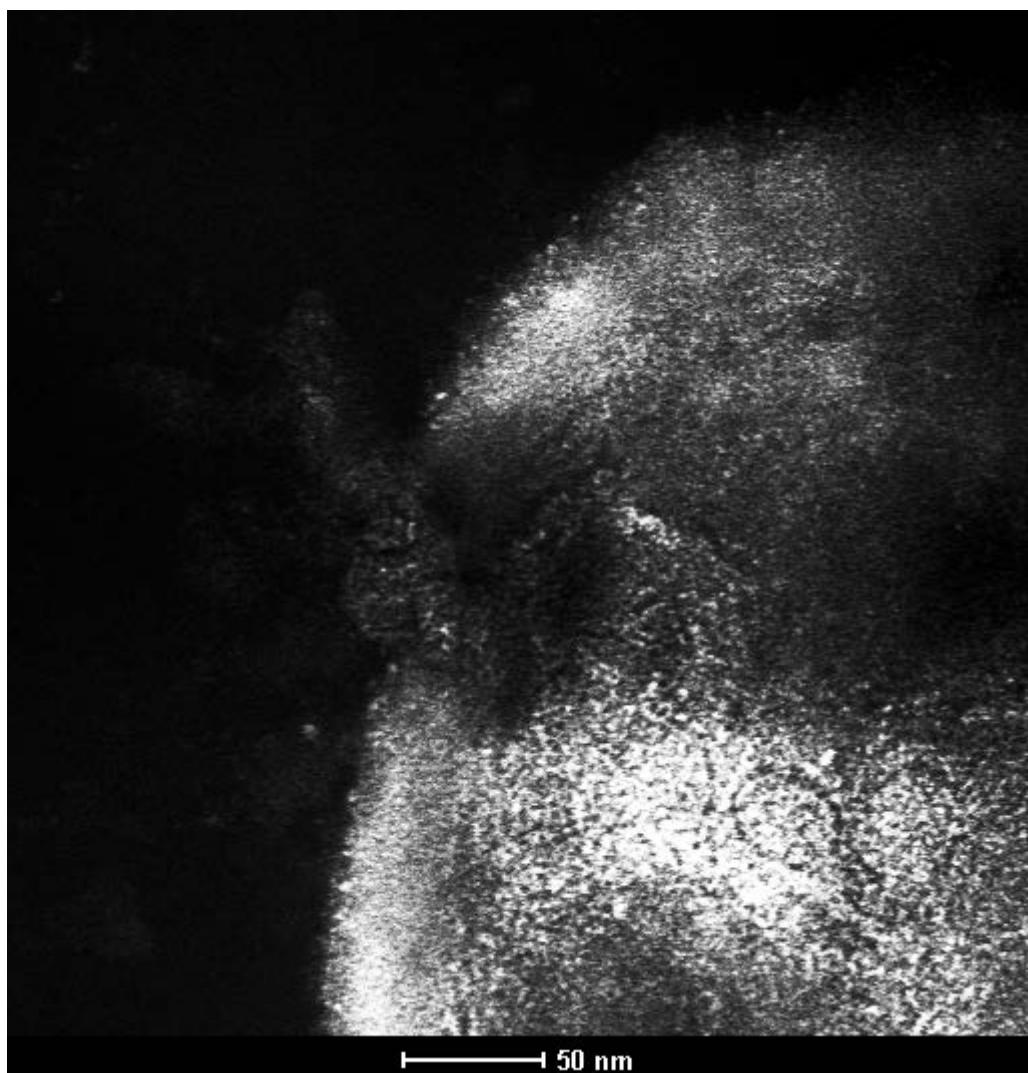


Figure 12:

7 DISCUSSION

196 [Environ. Sci. Technol] , *Environ. Sci. Technol* 37 p. .

197 [Del Giudice et al. ()] 'A quantum field theoretical approach to the collective behaviour of biological systems'. E
198 Del Giudice , S Doglia , M Milani , G Vitiello . *Nuclear Physics B* 1985. 251 p. .

199 [Urquhart et al. ()] 'Analysis of polyurethanes using core excitation spectroscopy. Part I: Model polyurethane
200 foam polymers'. S G Urquhart , A P Hitchcock , R D Leapman , R D Priester , E G Rightor . *Journal of
201 Polymer Science Part B: Polymer Physics* 1995. 33 p. .

202 [Park et al. ()] 'Bacterial adhesion on PEG modified polyurethane surfaces'. K D Park , Y S Kim , D K Han ,
203 Y H Kim , E H Lee , H Suh , K S Choi . *Biomaterials* 1998. 19 p. .

204 [Satriano et al. ()] 'Bacterial adhesion onto nanopatterned polymer surfaces'. C Satriano , G M L Messina , S
205 Carnazza , S Guglielmino , G Marletta . *Materials Science and Engineering* 2006. 26 p. .

206 [Sanzonetti ()] 'Bacterial pathogens, from adherence to invasion: comparative strategies'. P J Sanzonetti . *Med.
207 Microbiol. Immunol* 1993. 182 p. .

208 [Watanabe et al. ()] 'Bending electrostriction and space-charge distribution in polyurethane films'. M Watanabe
209 , N Wakimoto , H Shirai , T Hirai . *Journal of Applied Physics* 2003. 94 p. .

210 [Curia et al. ()] 'Beyond the biodestruction of polyurethane: S. aureus uptake of nanoparticles is a challenge
211 for toxicology'. R Curia , M Milani , L V Didenko , G A Avtandilov , N V Shevlyagina , T A Smirnova .
212 *Microscopy: advances in scientific research and education*, A Méndez-Vilas (ed.) 2014. Formatec Research
213 Center Publishing. p. .

214 [Didenko et al. ()] 'Biodestruction of polyurethane by Staphylococcus aureus (an investigation by SEM, TEM
215 and FIB)'. L V Didenko , G A Avtandilov , N V Shevlyagina , T A Smirnova , I Y Lebedenko , F Tatti , C
216 Savoia , G Evans , M Milani . *Current Microscopy Contributions to Advances in Science and Technology*, A
217 Méndez-Vilas (ed.) 2012. Formatec Research Center Publishing. p. .

218 [Ho and Popp (ed.) ()] *Bioelectrodynamics and biocommunication*, M W Ho , F Popp . A. and Warnke, U. (ed.)
219 1994. World Scientific Publishing.

220 [Arciola et al. ()] 'Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms
221 and implications for biofilm-resistant materials'. C R Arciola , D Campoccia , P Speziale , L Montanaro , J
222 W Costerton . *Biomaterials* 2012. 33 p. .

223 [Davydov ()] *Biology and Quantum mechanics*, A S Davydov . 1982. Pergamon, Oxford.

224 [Dombu et al. ()] 'Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium
225 cells'. C Y Dombu , M Kroubi , R Zibouche , R Matran , D Betbeder . *Nanotechnology* 2010. 21 p. 355102.

226 [Yoda et al. ()] 'Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion'. I Yoda , H
227 Koseki , M Tomita , T Shida , H Horiuchi , H Sakoda , M Osaki . *BMC Microbiology* 2014. 14 p. 234.

228 [Askar'yan ()] 'Effect of the gradient of a strong electromagnetic beam on electrons and atoms'. G A Askar'yan
229 . *Sov. Phys. JETP* 1962. 15 p. .

230 [Del Giudice et al. ()] 'Electromagnetic field and spontaneous symmetry breaking in biological matter'. E Del
231 Giudice , S Doglia , M Milani , G Vitiello . *Nuclear Physics B* 1986. 275 p. .

232 [Curia et al. ()] 'Electron microscopy broadens the horizons of toxicology: The role of nanoparticles vehiculated
233 by bacteria'. R Curia , M Milani , L V Didenko , N V Shevlyagina . *Current Topics in Toxicology* 2013. 9 p. .

234 [Iversen et al. ()] 'Endocytosis and intracellular transport of nanoparticles: present knowledge and need for
235 future studies'. T G Iversen , T Skotland , K Sandvig . *Nano Today* 2011. 6 p. .

236 [Kettiger et al. ()] 'Engineered nanomaterial uptake and tissue distribution: from cell to organism'. H Kettiger ,
237 A Schipanski , P Wick , J Huwyler . *International Journal of Nanomedicine* 2013. 8 p. .

238 [Salvati et al. ()] 'Experimental and theoretical comparison of intracellular import of polymeric nanoparticles
239 and small molecules: toward models of uptake kinetics'. A Salvati , C Åberg , T Santos , J Varela , P Pinto
240 , I Lynch , K A Dawson . *Nanomedicine: Nanotechnology, Biology and Medicine* 2011. 7 p. .

241 [Hoet et al. ()] 'Health impact of nanomaterials'. P H M Hoet , A Nemmar , B Nemery . *Nature Biotechnology*
242 2004. 22 p. 19.

243 [Korobeynikov et al. ()] 'Mechanism of surface charge creation due to image forces'. S M Korobeynikov , A V
244 Melekhov , G G Furin , V P Charalambako , D P Agoris . *J. Phys. D: Appl. Phys* 2002. 35 p. .

245 [Doherty and McMahon ()] 'Mechanisms of Endocytosis'. G J Doherty , H T McMahon . *Annu. Rev. Biochem*
246 2009. 78 p. .

247 [Howard ()] 'Microbial biodegradation of polyurethane'. G T Howard . *Recent Developments in Polymer
248 Recycling*, A Fainleib, O Grigoryeva (ed.) (Kerala, India) 2011. Transworld Research Network Publishing. p.
249 .

250 [Ghannoum and O'toole (ed.) ()] *Microbial Biofilms*, M A Ghannoum , O'toole . G. A. (ed.) 2004. Washington
251 DC, USA: Amer. Society for Microbiology Press.

7 DISCUSSION

252 [Zachinyaev et al. ()] 'Microbial degradation of PU'. Ya V Zachinyaev , I I Miroshnichenko , A V Zachinyaeva .
253 *Russian Journal of Applied Chemistry* 2009. 82 p. .

254 [Skruzny et al. ()] 'Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-
255 mediated endocytosis'. M Skruzny , T Brach , R Ciuffa , S Rybina , M Wachsmuth , M Kaksonen . *Proc.
256 Natl. Acad. Sci. USA*, (Natl. Acad. Sci. USA) 2012. 109 p. .

257 [Lundqvist et al. ()] 'Nanoparticle size and surface properties determine the protein corona with possible
258 implications for biological impacts'. M Lundqvist , J Stigler , G Elia , I Lynch , T Cedervall , K A Dawson .
259 *Proc. Natl. Acad. Sci. USA*, (Natl. Acad. Sci. USA) 2008. 105 p. .

260 [Didenko et al. ()] 'Nanoparticles Production and Inclusion in *S. aureus* Incubated with Polyurethane: An
261 Electron Microscopy Analysis'. L V Didenko , G A Avtandilov , N V Shevlyagina , N M Shustrova , T
262 A Smirnova , I Y Lebedenko , R Curia , C Savoia , F Tatti , M Milani . *Open Journal of Medical Imaging*
263 2013. 3 p. .

264 [Gatti ()] 'Nanopathology -The role of micro-and nano-particles in biomaterial-induced pathology'. A M Gatti .
265 *A RTD PROJECT QLRT*, European Commission (ed.) 2004. 2001-147 (2002-2005).

266 [Teterycz et al. ()] 'Outcome of orthopedic implant infections due to different staphylococci'. D Teterycz , T
267 Ferry , D Lew , R Stern , M Assal , P Hoffmeyer , L Bernard , I Uçkay . *International Journal of Infectious
268 Diseases* 2010. 14 p. .

269 [Krumeich] *Properties of electrons, their interactions with matter and applications in electron microscopy*, F
270 Krumeich . <http://www.microscopy.ethz.ch/downloads/Interactions.pdf>

271 [Bhattacharyya and Choudhury ()] 'Quorum Sensing -Let Bacteria Talk'. I Bhattacharyya , M Choudhury .
272 *Advanced Biotech* 2008. 7 p. .

273 [References Références Referencias] *References Références Referencias*,

274 [Simkó and Mattsson ()] 'Risks from accidental exposures to engineered nanoparticles and neurological health
275 effects: A critical review'. M Simkó , M Mattsson . *Particle and Fibre Toxicology* 2010. 7 p. 42.

276 [Cabeen and Jacobs-Wagner ()] 'Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis'.
277 M T Cabeen , C Jacobs-Wagner . *The Journal of Cell Biology* 2007. 179 p. .

278 [Smirnova et al. ()] 'Structural and Functional Characteristics of Bacterial Biofilms'. T A Smirnova , L V Didenko
279 , R R Azizbekyan , Yu M Romanova . *Microbiology* 2010. 79 p. .

280 [Amos et al. ()] 'Structural/functional homology between the bacterial and eukaryotic cytoskeletons'. L A Amos
281 , F Van Den Ent , J Löwe . *Current Opinion in Cell Biology* 2004. 16 p. .

282 [Flemming and Wingender ()] 'The biofilm matrix'. H C Flemming , J Wingender . *Nature Reviews Microbiology*
283 2010. 8 p. .

284 [Revell ()] 'The biological effects of nanoparticles'. P A Revell . *Nanotechnology Perceptions* 2006. 2 p. .

285 [Wang et al. ()] 'The biomolecular corona is retained during nanoparticle uptake and protects the cells from the
286 damage induced by cationic nanoparticles until degraded in the lysosomes'. F Wang , L Yu , M P Monopoli ,
287 P Sandin , E Mahon , A Salvati , K A Dawson . *Nanomedicine: Nanotechnology, Biology and Medicine* 2013.
288 9 p. .

289 [Fröhlich ()] 'The extraordinary dielectric properties of biological materials and the action of enzymes'. H Fröhlich
290 . *Proc. Natl. Acad. Sci. USA*, (Natl. Acad. Sci. USA) 1975. 72 p. .

291 [Pekker and Shneider ()] *The surface charge of a cell lipid membrane*, M Pekker , M N Shneider . <http://arxiv.org/abs/1401.4707> 2014.

292 [Kasemets et al. ()] 'Toxicity of CuO Nanoparticles to Yeast *Saccharomyces cerevisiae* BY4741 Wild-Type and
293 Its Nine Isogenic Single-Gene Deletion Mutants'. K Kasemets , S Suppi , K Künnis-Beres , A Kahru . *Chem.
294 Res. Toxicol* 2013. 26 p. .

295 [Lynch et al. ()] 'What does the cell see?'. I Lynch , A Salvati , K A Dawson . *Nature Nanotechnology* 2009. 4 p.
296 .

297 [Walczak et al. ()] 'What the cell "sees" in bionanoscience'. D Walczak , F Baldelli Bombelli , M P Monopoli , I
298 Lynch , K A Dawson . *J. Am. Chem. Soc* 2010. 132 p. .