

1 Developmental Anomalies of Temporal Muscle Superficial 2 Temporal Muscle

3 Cotroneo Gustavo¹

4 ¹ Hospital Argerich

5 *Received: 14 December 2013 Accepted: 2 January 2014 Published: 15 January 2014*

6

7 **Abstract**

8 The anatomy of the temporal region is complex. Also there is controversy over the structures
9 that make up the region. Thus than classically described anatomical structures as fascias,
10 temporal muscle, frontal nerve, arteries, the superficial temporal muscle is present in a
11 variable number of cases. This muscle represents fibrous regression of named superficial
12 temporal muscle very developed in animals with a specific masticatory action. In human has
13 no physiological importance but its knowledge is important for plastic and maxillofacial
14 surgeons to undertake surgeries in the region since it can generate confusion over anatomical
15 planes and their relationship to vessels and nerves.

16

17 **Index terms—**

18 **1 Introduction**

19 The temporal region has anatomical structure of subcutaneous fascias that confuses not only the constitution
20 of the region but also during plastic and reconstructive surgical maneuvers. Identify di fferent fascias and its
21 connections with numerous nerve and artery branches that cross the region is especially important for plastic
22 surgeons.

23 The first fascial layer of the region is called temporoparietal fascia and it is located below the hair follicles
24 and subcutaneous tissue of the temporoparietal region. It is c onsidered a cephalic extensi on of the superficial
25 muscul oaponeurotic system described by ??itz V and Peyronie M (1974) and continues in all directions with
26 other structures of this system (1).

27 Anteriorly, it is continuous with the frontalis and orbicularis oculi muscle, whereas posteriorly, it blends with
28 the occipitalis and posterior auricular muscles. Superiorly, the fascia merges with the galea aponeurotica and
29 inferiorly it is continuous with the superficial musculoap oneurotic system. (2) (3) Traditionally, it has been
30 described as a single sheet, although other authors such as Knize DM (4) and Tellio?lu AT (5) mention that this
31 would comprise two sheets. Histological studies showed the presence of a thin muscular sheet in the outer sheet of
32 the temporoparietal fascia below the temporal line. This muscle corresponds to the superficial temporal muscle
33 present in some animals but that it has been transform rudimentary in humans and only remains superficially
34 covering the temporal region.

35 Author ? ?: Hospital Argerich, Argentina. e-mail: coto_@hotmail.com These muscle fibers lack functionality
36 and constitute only anatomical finding.

37 A loose areolar tissue plane lies deep to the temporoparietal fascia and extends beneath the entire superficial
38 fascia system of the scalp, including the galea aponeurotica and the frontalis and occipitalis muscle.

39 Deeper is the temporal fascia, which surrounds the temporal muscle. Underneath the muscle, this fascia merges
40 with the periosteum of the temporal , frontal and parietal bone. Superiorly, the temporal fascia inserts in the
41 superior temporal line and inferiorly it inserts in the zygomatic arch. (6). FIGURE ??.

42 There is no doubt that the most important anatomic element in the region is the frontal branch of the facial
43 nerve.

4 SUPERFICIAL TEMPORAL MUSCLE AND

44 The facial nerve runs almost horizontally to the parotid 2cm below the zygomatic arch, heading obliquely from
45 bac k to front , from inside to outside and from top to bottom. As it leads to the periphery of the parotid gland,
46 it becomes more superficial. Inside of the parotid gland, the division of the primary branches occurs: an upper,
47 the temporo-facial and lower the cervical facial. (7) When the temporo-facial branch reaches the level of the
48 mandibular condyle, it is divided into several secondary trunks, which usually anastomose forming true plexuses.
49 The branches that arise from the temporo-facial trunk are: 1. Frontal; 2. Temporal; 3. Eyelid branches; 4.
50 Zygomatics and 5. Upper mouth.

51 Regarding the temporal region above the zygomatic arch, the frontal branch is located in the existing plane
52 between the temporoparietal fascia and the superficial layer of the temporal fascia. This paper has following
53 objective to clarify anatomical knowledge of the temporoparietal region, principally when fibers of temporal
54 superficial muscle are presents avoiding erroneous surgical maneuvers and potentially dangerous for both regional
55 nerves and vessel s.

56 2 Material and Method

57 It is difficult to establish the true incidence rate of this muscle abnormality, but In 58 surgeries performed in
58 the temporal region in the Plastic and Reconstructive Department of Cosme Argerich Hospital in Buenos Aires
59 was evident the presence of superficial muscle fibers confirmed by direct visualization and histologic studies in 29
60 patients. The histological study confirmed striated skeletal muscle with hematoxilin and eosin staining. FIGURE
61 ?? AND 3.

62 Twenty patients (69%) were operated of aging face by mean of superficial and submuscular lifting and other
63 9 (31%) underwent maxillofacial surgeries in TM J, superior maxilla and zygomatic arch.

64 During undermining of temporal area, atrophic muscular fibers were found immediately below subcutaneous
65 fat layer into temporoparietal fascia. all cases (29 patients) muscle fibers were very thin, forming isolated groups
66 extended on temporal area.

67 3 III.

68 4 Superficial Temporal Muscle and

69 Comparative Anatomy ??xnard CE al. (2008) in their research note 400 human corpses, 35 of which possessed the
70 superficial temporal muscle. These bodies possessing the superficial temporal muscle were dissected. Furthermore
71 dissected 4 chimpanzees, 4 rhesus monkeys, col obus monkeys and other species. (8) In monkeys and apes, the
72 arrangement of the dissected temporal muscles at work is consistent with primate anatomy texts. A superficial
73 fleshy head of the temporalis muscle takes origin from the skull area between the superior and inferior temporal
74 ridges, from the ridges themselves and to a slight degree from the outer surface of the underlying deep head.
75 Further a few additional fibres taking origin from the internal surface of the zygomatic arch. This superficial
76 muscle is covered by deep fascia which arises from the superior temporal ridge of the skull and passes downwards
77 on the surface of the superficial fibres of the muscle to the coronoid process of the mandible.

78 The main (deep) part of the temporal muscle is below the superficial temporal muscle and arises from the
79 periosteum covering a large part of the lateral surface of the skull below the inferior temporal ridge. This muscle
80 gives way to a glistening silver tendon which also inserts on the coronoid process of the mandible. This muscle
81 is covered by deep fascia which arises, as does the deep fascia lining the undersurface of the superficial head,
82 from the inferior temporal ridge. The fact , however, that these two layers are separate implies that, at least on
83 occasion, these two muscles are capable of contracting independently, even though they might often act together.

84 In humans, the temporalis muscle is different. It arises from the cranium at and below the inferior temporal
85 line (a thin line in humans, rather a strong ridge as in apes and most large monkeys). It is characterised by a
86 glistening silver tendon just like that of the deep head in apes and monkeys. Underlying the human temporalis
87 muscle is a deeper layer of deep fascia entirely similar to the deepest layer under the deep head in apes and
88 monkeys.

89 Oxnard CE in his research dissected 35 cadavers in each of which a complete or partial superficial head of the
90 temporalis muscle was present. These anomalous muscular heads extends from situations just like in apes and
91 monkeys where the entire muscle was present , though very much thinner, to situations in which lesser portions
92 of the muscle were found .

93 There were 4 cases (1%) with a superficial head entirely similar, though very much thinner, to that in apes
94 and monkeys. There were 31 cases (8%) in which a partial superficial head was present . This muscle arises
95 from the area comprised between the temporal lines. It has a cranial part that may have muscle fibers or have
96 mostly aponeurotic component. As in apes and monkeys, this muscle receives muscular fibers from the surface
97 of the deep temporal muscle and the internal face of the zygomatic arch and directed to the coronoid process of
98 mandible. (8) FIGURE ??.

99 Why the loss of this temporal muscle has occurred in humans? An obvious possibility is that changed
100 masticatory habits and mechanics did not render such reduction or loss deleterious, whereas such changes would
101 be immediately eliminated in creatures with the diets of most apes and monkeys.

102 Furthermore, Testut, in his description of the epicranial fascia or aponeurotic galea expressed that morphologically the galea should be considered, as the muscles that attaches, as a portion of the panniculus carnosus, which originally muscular, has experienced during its development a fibrous regression. (9) (10) IV.

105 **5 Discussion**

106 The temporal region is a complex anatomical area due to its composition of multiple layers and there is a strong semantic and practical controversy over its component structures and the relationships they have with each other.

109 Understanding the anatomy of the area is important for the plastic and head and neck surgeons, to accurately identify different fascias that span the region and its connections with numerous nerve and artery branches that cross the region. It is essential to know the frontal branch of the temporo-facial branch of the facial nerve that extends obliquely from the zygomatic arch to reach the deepest part of the frontal muscle.

113 dissection of the temporal region for aesthetic or reconstructive surgeries.

114 The presence of muscle fibers in superficial planes may confuse the surgeon who can work in a wrong plane and also, he can make future surgical maneuvers that may endanger any of the neural structures mentioned.

116 There is sufficient evidence to show the presence of a thin muscular layer or even isolated muscle fibers in the temporoparietal fascia, below the hair follicles. This muscle corresponds to the superficial temporal muscle present in animals that has been devolving in humans, but there may be remains superficially covering the temporal region; these muscle fibers lack functionality and are only anatomical finding. FIGURE ??.

120 Of the different explanatory theories about the persistence of this muscle, have value two: 1) remnant of the superficial temporal muscle and 2) remaining panniculus carnosus. Animals including lower mammals, have muscles that are attached to the skin, these are skin muscles or panniculus carnosus (11). These muscles allow the animal to mobilize certain areas of the skin, apparently as a protective measure to ward off noxious agents, such as insects. In human limbs have evolved so much that can reach any part of the body. For this reason, the panniculus carnosus became obsolete and has devolved. But remnants of it can be found in some individuals. Some muscles may contain remnants of the panniculus carnosus as the pectoralis major, trapezius, serratus, pyramidalis, palmaris longus and some craniofacial muscles.

128 V.

129 **6 Conclusion**

130 It is essential the knowledge of the complex anatomy of the temporal region for the surgeon that undertake any surgery in the region. Fibers of the superficial temporal muscle can be usually found; though they have no functional or physiological significance but surgical importance.

133 From another point of view, the presence of this muscle must be known by maxillofacial surgeons when they perform surgeries on the region in case of both superior mandible or TMJ approaches.

135 For the plastic surgeon also it is important to know the existence of the superficial temporal muscle and that may become apparent during the regional dissection in the treatment of periorbital aging or any other variety of rhytidectomies confusing the surgeon about the exact location of the anatomical planes and their relation to nerve and vascular structures.

Figure 1: TI

6 CONCLUSION

139 [Knize ()] 'An anatomically based study of the mechanism of eyebrow ptosis'. D M Knize . *Plast Reconstr
140 Surgery* 1996. 97 p. .

141 [Orlando ()] *Cirugía de los tumores de la glándula parótida*, Guerrissi Jorge Orlando . 2007. Buenos Aires,
142 AMOLCA.

143 [Oxnard ()] 'Ghost of the past I: Some muscles and fasciae in the head domain'. Oxnard . *Folia Primatol* 2008.
144 79 p. .

145 [Stevenson and Hall ()] *Human mal formations and related anomalies*, R Stevenson , J Hall . 2006. Oxford
146 University Press. p. .

147 [Davidge et al. ()] 'Naming the soft tissue layers of the temporoparietal region: unifying anatomic terminology
148 across surgical disciplines'. K M Davidge , W Van Furth , A Agur . *Operative neurosurgery* 2010. 1 p. .

149 [Tellioglu et al. ()] 'Temporoparietal fascia: an anatomic and histologic reinvestigation with new potential
150 clinical application'. A T Tellioglu , I Tekdemir , E A Erdemli , E Tuccar , G Ulusoy . *Plast Reconstr Surg*
151 2000. 105 p. .

152 [Testut L (1884) Les anomalies musculaires chez l'homme] *Testut L (1884) Les anomalies musculaires chez
153 l'homme*, Masson G . Paris.

154 [De Vasconcellos et al. ()] 'The fascial planes of the temple and face: an en-block anatomical study and plea for
155 consistency'. Accioli De Vasconcellos , J Britto , J A Henin , D Vacher , C . *Br J Plastic Surgery* 2003. 56 p. .

156 [Krayenbuhl et al. ()] 'The relationship of the frontotemporal branches of the facial nerve to the fascias of the
157 temporal region: a literature review applied to practical anatomical dissection'. N Krayenbuhl , G Isolan , A
158 Hafez , M Ysargil . *Neurosurgery Rev* 2007. 30 p. .

159 [Mitz and Peyronie ()] 'The superficial musculopaponeurotic system (SMAS) in the parotid and cheek area'. V
160 Mitz , M Peyronie . *Plast. Reconstr. Surgery* 1976. 58 p. .

161 [Testut and Latarjet ()] 'Tratado de anatomía humana'. L Testut , A Latarjet . *Salvat* 1951. (9th edition)