

1 A Prospective Single-Centre Randomised Controlled Study to
2 Compare the Time to Healing of Partial Thickness Burn Wounds
3 Treated with Versajet, Biobrane and Acticoat to Conventional
4 Therapy

5 A.Muganza¹

6 ¹ UNIVERSITY OF WITWATERSRAND

7 *Received: 9 December 2013 Accepted: 5 January 2014 Published: 15 January 2014*

8 **Abstract**

9 Background: Burns in South Africa account for significant morbidity, mortality
10 and cost. Treatment options that could ease this burden require exploration.

13 **Index terms—**

14 **1 Introduction**

15 In 2008 burns accounted for the majority (19%) of all non-transport injury deaths in South Africa [1], and are a
16 significant cause of paediatric morbidity [2] and mortality [3]. The costs associated with the treatment of burns
17 are considered to be large [4]. Due to resource constraints in South Africa, treatment options that can ease
18 this burden without compromising clinical outcomes are starting to be explored [5]. The need for daily dressing
19 changes has not only been shown to increase the cost of burn wound care in some instances, but is also associated
20 with pain and trauma, which is of particular importance in the paediatric patient [6].

21 A standard of care (SOC) depends on the number of factors, including experience, expertise and resource
22 availability [7]. Our existing SOC for partial thickness scald or fire burn consists of initial cleaning and/or
23 debridement in the ward or theatre, followed by the daily application of silver sulphadiazine dressing. The
24 adoption of this particular SOC may not represent the most clinically appropriate or efficient form of resource
25 allocation.

26 Biobrane is a biosynthetic wound dressing, and is becoming more widely used in the management of burns,
27 particularly partial thickness burns in paediatric patients [8]. When used appropriately, it has been shown to offer
28 significant advantages over more conventional therapy, including decreased time to heal [9], decreased length of
29 stay [9][10][11], fewer dressing changes [10] and decreased costs [10,11]. The removal of necrotic skin, tissue and/or
30 infectious materials is the primary goal in the initial treatment of burn wounds [12]. While surgical debridement
31 is considered the goal standard, it has been suggested that a hydrosurgery system such as Versajet may have
32 advantages over traditional escharectomy in burn patients [12]. Versajet utilises a fluid jet under high pressure,
33 and has been shown to be effective at cleaning and debriding superficial and intermediate depth burn wound
34 prior to the application dressings like Biobrane [13]. A number of institutions have adopted nanocrystalline silver
35 (NC) dressing as the SOC for firstline topical prophylactic treatment of burn-wound infectious [7, ??4]. Acticoat
36 is a NC dressing that can stay in place for up to 72 hours.

37 Objectives: The primary objective was to compare the time to healing of partial thickness burn wounds treated
38 with Versajet, Biobrane and Acticoat to conventional therapy. Methods: A randomised, controlled, prospective
39 study was undertaken.

40 Results: One hundred and twenty one patients were randomised, and 96 were analysed. Median time to
41 healing was slightly shorter for Biobrane-treated patients in the pediatric sub-group (21.7 [±9.0] versus 23.7
42 [±9.4], p=0.5361), and slightly longer in the adult sub-group (19 [12][13] ??14] ??15] ??16] ??17] ??18] ??19]
43 ??20] ??21] ??22] ??23] ??24] ??25] versus 18.5 [12][13] ??14] ??15] ??16] ??17] ??18] ??19] ??20] ??21] ??22]

2 METHODS

44 ??23] ??24] ??25] ??26] ??27], p=0.09695). Healing rates were higher for Biobrane-treated patients in the paediatric
45 sub-group (84.6% versus 68.4%, p=0.197), and lower in the adult subgroup (78.3% versus 85.7%, p=0.487). .
46 The absolute risk reduction (ARR) for Biobrane-treated patients in the paediatric sub-group was 0.16 (16%),
47 yielding a number-needed-to-treat (NNT) of 6. The median number of dressing changes was significantly lower
48 for Biobrane group in the adult and paediatric population (6.2 [\pm 3.6], p=0.0003; and 7.6 [\pm 4.8] versus 10.7 [\pm 4.8],
49 p=0.039). The mean cost per healed burn for Biobrane group was lower in the paediatric population (R111, 385
50 versus R143,917), and higher in the adult population (R54, 290 versus R90.175).

51 We hypothesized that the advantages described for Biobrane in the treatment for partial thickness burns
52 combined with the prophylactic antiinfective properties of a NC dressing might represent an effective utilization
53 of resources, and set out to investigate this in a randomised controlled study. The primary objective of our
54 study was to compare the time to healing of partial thickness burn wounds treated with Versajet, Biobrane and
55 Acticoat to standard therapy over a period of up to 6 weeks. Secondary objectives were to compare costs, length
56 of inpatient stay, and number of surgical procedures and dressing changes performed in the above groups.

57 II.

58 2 Methods

59 This study was carried out as per the principles laid out in the Declaration of Helsinki and subsequent amendments
60 thereto. It was approved by the Human Research Ethics Committee: (Medical) of the University of the
61 Witswaterstrand (090203). Informed consent was obtained for patients.

62 All eligible patients between 1 and 60 years of age requiring admission to hospital for partial thickness scald
63 or five burns covering greater than 10% and less than or equal to 40% of total body surface (TBSA), with an
64 estimated healing time of between and 21 days, were invited to participate in the trial.

65 Following stabilization, patients were randomized Standard therapy or Biobrane using the sealed envelope
66 technique. To ensure broadly comparable patient groups with regard to the % TBSA of the burn, the
67 randomization was stratified according to the estimate initial % TBSA of the burn. In those patients with
68 more than 1 discrete burn, the largest burn was considered the reference wound.

69 An assumption was made regarding mean time to healing in the 2 groups, and the associate standard deviations,
70 as information was lacking regarding time to healing and the size of the difference Standard therapy and Biobrane.
71 The sample size calculation (conducted using STATA software) resulted in a required sample size of 80 patients.

72 Patients randomised to Standard therapy had their wounds cleaned and dressed in theatre or in the
73 ward/dressing station, at the discretion of the investigator. A silver sulfadiazene dressing was applied, covered
74 secondarily with abdominal swabs or plastic gauze, and kept in position with a crepe bandage. Daily dressing took
75 place until such time that the reference wound had healed or 6 weeks had passed, in hospital or as an out-patient
76 following discharge. Wound healing was defined as complete epithelialisation in the absence of drainage.

77 Patients randomised to Biobrane were taken to theatre, where their wounds were cleaned and debrided with
78 Versajet. Biobrane was applied and held in place using staples, tape, sutures or skin closure strips. Acticoat was
79 applied damped over the Biobrane, covered secondarily with Melolin and kept in position with crepe bandage.
80 The Acticoat was removed on Day 3, and re-applied at the discretion of the investigator if secure Biobrane
81 adhesion had not been obtained. If further Acticoat was not required, the wounds were covered with a crepe
82 dressing. On Day 6, staples or sutures are removed at the discretion of the investigator. If there was no adherence,
83 all Biobrane was removed and the burn wounds were treated according to protocol. If the Biobrane was fully
84 adherent or showed signs of purulent pockets, the areas of non-adherence were trimmed out and covered with
85 Acticoat, Melolin and a crepe bandage. Wounds were assessed every 3 days after and Acticoat dressing were
86 changed if in situ, until such time that the wound bed appeared healthy and granulating, at which point the
87 wounds and the remaining adhered Biobrane were covered with a crepe dressing. When the Biobrane started to
88 lift, loose edges were trimmed. This process was repeated every 3 days until such time as the reference wound
89 had healed or 6 weeks had passed.

90 All patients were evaluated at each dressing change while in hospital, and at out-patients visits hereafter.
91 For each dressing change and theatre visit related to the reference wound, burn-specific and resource-specific
92 information was recorded.

93 The primary endpoint was the average time to heal the reference burn per group divided by the number of
94 healed reference burns per group. Secondary endpoints for comparison between the 2 study groups included the
95 average cost per healed burn per group, defined as the total cost of treatment for all patients per group at 6 weeks
96 divided by the total number of healed burns per group at 6 weeks, the average length of who in-patient stay per
97 group, with wound healing used as a proxy for discharge date in those patients who couldn't not be discharged
98 due to poor socio-economic circumstances, and the number of surgical procedures and dressing changes performed
99 per group. For numeric variables, medians and inter-quartile ranges were cited for data that was not normally
100 distributed. Cost data was always represented by the average cost per patient.

101 The cost analysis was performed from a public health sector perspective. The study aimed to quantify direct
102 costs associated with using an ingredients approach. Cost categories included: dressing and other materials,
103 nursing time, surgeon and anesthetist time, theatre levels of care, out-patient treatments, blood products,
104 investigation and medications. Indirect costs, including those pertaining to the patients, and their families

105 and caregivers were not included. South African public sector costs excluding value-added tax (VAT) for the
106 financial year ending February 2011 were used, and

107 **3 III. Results**

108 Recruitment commenced in April 2009. Following a scheduled interim analysis, the sample size was increased
109 to 100 patients. Due to loss to follow-up for a variety of reasons, a subsequent request to increase sample
110 size from 100 to 120 to allow for analysis on sample close to 100 patients was made and granted. Patient
111 enrolment was compelled in January 2012. Study subjects were analysed on a per protocol basis and only
112 patients that completed the study as per protocol were included. In total 121 patients were randomized, of which
113 96 were analysed. Participant flow, including the protocol violations and reasons for exclusion from analysis, are
114 summarised in Figure ??.

115 The median age of all the subjects was lower in Biobrane group (6.6[3.4-34.2] versus 23.2[2.3-25.4] years);
116 however this difference was not found to be statistically significant ($p=0.0984$), and was not apparent in
117 the paediatric (defined in our institution as less than 10 years) and adult sub-groups. Additional baseline
118 characteristics are summarized in Table ??, and are comparable between the 2 groups.

119 Table ?? illustrates results for primary and secondary outcome measures, and includes a subgroup analysis of
120 both children and adults. The median time to healing was slightly longer in the Biobrane therapy group overall
121 (20.5 [13] ??14] ??15] ??16] ??17] ??18] ??19] ??20] ??21] ??22] ??23] ??24] ??25] versus 19[14-27], $p=0.9919$)
122 and in the adult sub-group (19 [12][13] ??14] ??15] ??16] ??17] ??18] ??19] ??20] ??21] ??22] ??23] ??24]
123 ??25] versus 18.5 [12][13] ??14] ??15] ??16] ??17] ??18] ??19] ??20] ??21] ??22] ??23] ??24] ??25] ??26] ??27],
124 $p=0.9695$), and slightly shorter in the paediatric sub-group (21.7[±9.0] versus 23.7[±9.4], $p=0.5361$). Healing
125 rates were higher in Biobrane-treated patients overall (81.6% versus 78.7%, $p=0.877$) and in the paediatric
126 sub-group (84.6%versus 68.4%, $p=0.197$). Healing rates were lower for Biobrane-treated patients in the adult
127 sub-group (78.3% versus 85.7%, $p=0.487$). The absolute risk reduction (ARR) in the paediatric sub-group for
128 Biobrane-treated patients was 0.16 (16%), yielding a number-needed-to-treat (NNT) of 6.

129 The median LOS was slightly longer for Biobrane group overall, (18 [10][11][12][13] ??14] ??15] ??16] ??17]
130 ??18] ??19] ??20] ??21] ??22] ??23] ??24] ??25] ??26] versus 17 [12][13] ??14] ??15] ??16] ??17] ??18] ??19]
131 ??20] ??21] ??22] ??23] ??24] ??25], $p=0.8978$), but the median was shorter in both the adult and paediatric
132 sub-groups (16 [9][10][11][12][13] ??14] ??15] ??16] ??17] ??18] ??19] ??20] ??21] ??22] versus 17 [10][11][12][13]
133 ??14] ??15] ??16] ??17] ??18] ??19] ??20], $p=0.6700$; and 19 versus 20 [14-34], $p=0.7685$). The median LOS
134 prior to the reference wound being deemed suitable for management on an outpatient basis was shorter for the
135 Biobrane group overall, ??10 [5-23] versus 16 [12][13] ??14] ??15] ??16] ??17] ??18] ??19] ??20] ??21] ??22] ??23],
136 $p=0.0417$), and also in the adult and paediatric sub-groups ??9[5-21] versus 15.5 ??9.5-20], $p=0.0000$); and 12.5
137 ??7.24] versus 20 [14-34], $p=0.08$). As shown in Table ??, the median number of surgical procedures was higher
138 for the Biobrane group than the Standard group (1[1-1] versus changes was lower for the Biobrane group overall
139 ??5[4-9] versus 10 [8-12], $p=0.0001$), and also in the adult population ??6.2 [±3.6] The mean cost per healed
140 burn was higher for the Biobrane group overall (R85,780 versus R101,826) and in the adult subgroup (R54,290
141 versus R90,175). In children the average cost to heal the burn was lower in the Biobrane group (R111,358 versus
142 R143,917). Length of stay was the most significant cost driver across all groups, accounting for between 70
143 and 80 percent of all costs associated with burn wound management. (Table ??). The mean analgesic costs in
144 the Biobrane-treated subjects were at least half those for the Standard therapy-treated subjects for all patients,
145 including children and adults. The mean anti-infective costs were lower in the Biobrane-treated subjects overall
146 (R241 versus R468, in children (R351 versus R450), in adults (R116 versus R480).

147 Table ?? shows a further sub-analysis by burn size. Observed differences in time to heal and healing rates did
148 not reach statistical significance. In the large burn paediatric sub-group, the average cost per healed burn for
149 the Biobrane group was less than half that of the Standard group (R146,974 versus R299,461).

150 IV.

151 **4 Discussion**

152 Much of the published literature looking at Biobrane has conducted in a paediatric setting [7,10]. We observed
153 a small decrease in time to healing in Biobrane-treated patients in our paediatric sub-group, although this did
154 not reach significance as reported previously [9]. The increased healing rates associated with Biobrane in the
155 paediatric subgroup translated into 16% risk reduction in the development of an unhealed burn. Increased healing
156 rates in our paediatric subgroup also contributed to the observed decreased decrease in cost per healed burn,
157 another important consideration in our environment. This cost advantage was particularly noted in the large
158 burn subgroup. Although LOS was decreased for children treated with Biobrane, this decrease did not reach
159 significance and was not as large as might have been expected from other published studies. This is due in part
160 to the challenging socio-economic circumstances facing many of our patients. Under normal circumstance we
161 would discharge patients to out-patients follow-up as soon as the rate of burn wound healing allowed it, and
162 certainly in patients where dressing changes were required to be performed every 3 days (as opposed to on a
163 daily basis). Unfortunately during the course of the study we found that we were unable to discharge a number
164 of these patients for follow up in the community, for reasons purely non-medical, and solely related to lack of

7 CONFLICT OF INTEREST STATEMENTS

165 social support structures. For this reason, we started to capture the date on which the reference wound was
166 deemed suitable for management on an out-patient basis. Biobrane would appear to offer a significant advantage
167 over Standard therapy in this regard in paediatric patients and we would therefore aim to record this parameter
168 formally in future-planned studies.

169 The time to suitability for management of the reference wound on an out-patient basis was similarly
170 significantly shorter for Biobrane-treated patients in the adult subgroup, this did not translate into a reduced or
171 even comparable LOS cost when compared to Standard therapy-treated patients.

172 The fact that this group had higher ICU and high care costs may be related to the requirement for general
173 anaesthetic for initial Versajet debridement, although the same trend was not observed in the paediatric
174 population. A recent retrospective analysis suggests that in adults Biobrane may be better suited to extensive
175 superficial burns, rather than smaller mid dermal or mixed depth burns ??15]. Identifying burn depth with
176 certainty on admission is an ongoing challenge to the burns surgeon -a number of burns we believed to be partial
177 thickness on admission later revealed themselves to be full thickness, necessitating alternate treatment in both
178 groups.

179 The increased mean number of surgical procedures for the Biobrane group was expected, given that the
180 protocol called for all initial dressing changes to be done in theatre for this group. The significantly decreased
181 number of dressing changes for the Biobrane group is in line with findings of other studies [10]. The associated
182 decreased trauma is important, particularly for the paediatric population. Although not a significant cost-driver,
183 the markedly reduced analgesic costs in all Biobrane-treated patients provide further evidence of this reduction
184 in discomfort.

185 Pseudomonas infection is always of concern in the burns unit, and was noted on more than one occasion over
186 the course of our trial. Although not the focus of our study, we did note that Biobrane use is incompatible with
187 Pseudomonas infection, and a high level of suspicion for this organism is warranted in cases of non-adherence.

188 V.

189 5 Conclusion

190 Although Biobrane and Acticoat did not lead to a significant decrease in time to healing when compared with
191 Standard therapy, we believe the significant reduction in dressing changes observed for this regime to be important,
192 particularly in children. Together cost reduction to treat and heal partial thickness burns, we recommend
193 Biobrane and Acticoat be considered first line therapy in children with partial thickness burns, and have adapted
194 our Standard of Care accordingly. In adults, although a significant decrease in dressing changes was observed,
195 the increased costs associated considered only in carefully selected patients. Deep partial thickness burns has
196 a poor outcome when Biobrane is used and prone to pseudomonas infection thus a superficial partial thickness
197 burns will be more beneficial using this modern regime. We have concluded as well that reduction in analgesics
198 and antibiotics used in Biobrane group reflects respectively reduction in pain and infection overall for these
199 patients. Any new treatment for burns must always take in account the socioeconomic condition of the patient
200 environment. In the future we need to evaluate if all patients need to be debrided in operating room prior to
201 application of skin substitutes.

202 6 VI.

203 7 Conflict of Interest Statements

No conflict of interest in the study.

Figure 1:

204

Table 1 - Baseline characteristics.

	Overall (n=96)		Paediatric subgroup (n=45)		Adult subgroup (n=51)	
	Overall (n=96)	Standard therapy	Biobrane and Acticoat	Standard therapy	Biobrane and Acticoat	Standard therapy
	n=47	n=49	n=19	n=26	n=28	n=23
Age (median [IQR])	13.0 [2.6-29.2]	23.2 [3.4-34.2]	6.6 [2.3-25.4]	2.7 [1.6-4.1]	2.3 [1.7-4.1]	29.6 [25.4-37.7]
	<i>Mann-Whitney: p=0.0984</i>					
Gender (% [n])						
Male	53% [51]	49% [23]	57% [28]	42% [8]	54% [14]	54% [15]
Female	47% [45]	51% [24]	43% [21]	58% [11]	46% [12]	46% [13]
Overall % TBSA (mean [+SD]) (median [IQR])	20 [+6.6] 20 [15-25]	21 [+7.5] 2 sample t-test: p=0.5594	21 [+7.1] 2 sample t-test: p=0.9717	22 [+7.5] 2 sample t-test: p=0.5933	19 [15-22.5] 19 [15-24]	20 [15-24] <i>Mann-Whitney: p=0.7521</i>
Reference wound % TBSA (mean [+SD]) (median [IQR])	11 [10-13] 11 [10-13]	12 [9-15] <i>Mann-Whitney: p=0.5086</i>	13 [+3.6] 2 sample t-test: p=0.5933	13 [+5.3] 2 sample t-test: p=0.5933	10 [9-12.5] 10 [8-14]	10 [8-14] <i>Mann-Whitney: p=0.9848</i>
Reference wound location (n [%])						
Anterior calf	1 (2%)	0 (0%)				
Anterior thigh	4 (9%)	0 (0%)				
Anterior trunk	22 (47%)	21 (43%)				
Anterior upper arm	5 (11%)	5 (10%)				
Posterior back	13 (28%)	21 (43%)				
Posterior buttock	0 (0%)	1 (2%)				
Posterior thigh	2 (4%)	0 (0%)				
Posterior upper arm	0 (0%)	1 (2%)				
Cause of injury (% [n])						
Scald	76 [79%]	32 [68%]	44 [90%]			
Fire	20 [21%]	15 [32%]	5 [10%]			

Figure 2:

0 (0%)
0 (0%)
21 (43%)
5 (10%)
21 (43%)
1 (2%)
0 (0%)
1 (2%)
44 [90%]
5 [10%]

Figure 3:

7 CONFLICT OF INTEREST STATEMENTS

Table 2 - Outcomes

Outcome	Overall (n=96)		Paediatric subgroup (n=45)			Adult subgroup (n=51)	
	Standard therapy n=47	Biobrane and Acticoat n=49	Standard therapy n=19	Biobrane and Acticoat n=26	Standard therapy n=28		
Primary outcome							
Time to healing (days) (mean [\pm SD]) (median [IQR])	19 [14-27]	20.5 [13-25]	23.7 [\pm 9.4] two sample t-test: $p=0.5361$	21.7 [\pm 9.0]		18.5 [12-27]	
			Mann-Whitney: $p=0.9919$			Mann-Whitney: $p=0.1$	
Healing rate (n [%])	78.7% [37/47]	81.6% [40/49]	68.4% [13/19]	84.6% [22/26]		85.7% [24/28]	
			chi ² : $p=0.721$			chi ² : $p=0.197$	
Secondary outcomes							
Cost to treat (mean [SD]) (ZAR)	67,529 [\pm 69,294]	83,123 [\pm 61,449]	98,470 [\pm 76,335]	94,226 [\pm 60,210]		46,534 [\pm 56,261]	
Average cost per healed burn per group	85,780	101,826	143,917	111,358		54,290	
Length of stay (median [IQR]) (days)	17 [12-25]	18 [10-26]	20 [14-34]	19 [13-35]		17 [10-20]	
Surgical procedures (median [IQR])	0 [0-1]	1 [1-1]	1 [0-1]	1 [1-1]		0 [0-1]	
Dressing changes (mean [\pm SD]) (median [IQR])			10.7 [\pm 4.8]	7.6 [\pm 4.8]		10.3 [\pm 3.8]	
	10 [8-12]	5 [4-9]					
			Mann-Whitney: $p=0.0001$			2 sample t-test: $p=0.039$	
						2 sample t-test: $p=0.0$	

Cost data are rounded to the nearest South African Rand (R).

Figure 4:

Table 3 - Cost Drivers: average cost per subject (mean R [%])

Average cost per subject	Overall						Paediatric subgroup						Adult subgroup					
	Overall (n=96)			Biobrane and Acticoat n=49			Paediatric subgroup (n=45)			Biobrane and Acticoat n=26			Adult subgroup (n=51)			Biobrane and Acticoat n=23		
	Standard d n=47	SD	%	Standard d n=49	SD	%	Standard d n=19	SD	%	Standard d n=26	SD	%	Standard d n=28	SD	%	Standard d n=23	SD	%
Theatre	2,884	4,915	4	10,538	2,556	13	3,124	4,817	3	9,773	2,125	10	2,722	5,061	6	11,403		
Dressing changes	2,711	1,416	4	4,649	6,659	6	2,875	1,418	3	2,825	1,621	3	2,599	1,430	6	6,711		
Length of stay	57,636	59,678	85	64,606	56,063	78	87,077	67,075	88	77,913	55,964	83	37,659	45,216	81	49,564		
Anti-infectives	468	1,406	1	241	777	0	450	710	0	351	1,007	0	480	1,740	1	116		
Analgesia	278	707	0	104	119	0	214	529	0	103	126	0	322	813	1	104		
Investigations	3,140	3,448	5	2,705	2,126	3	4,237	4,427	4	2,781	1,841	3	2,396	2,403	5	2,620		
Blood products	411	1,467	1	280	518	0	493	1,169	1	480	605	1	356	1,657	1	54		
Total	67,528		100	83,123		100	98,470		100	94,226		100	46,534		100	70,572		

Data are presented as means (SD), and rounded to the nearest South African Rand (R). Relative percentages are shown.

Figure 5:

Figure 6:

205 .1 Acknowledgements

206 All nurses and doctors of Chris Hani Baragwanath Burns Centre who participated in dressing and assessment of
207 wounds.

208 [Shock () , *Shock* 2000. 14 (3) p. .

209 [Wood ()] 'A prospective randomized clinical pilot study to compare the effectiveness of Biobrane (R) synthetic
210 wound dressing, with or without autologous cell suspension, to the local standard treatment regime in
211 paediatric scald injuries'. F Wood . *Burns* 2012. 38 (6) p. .

212 [Varas ()] 'A prospective, randomized trial of Acticoat versus silver sulfadiazine in the treatment of partial-
213 thickness burns: which method is less painful?'. R P Varas . *J Burn Care Rehabil* 2005. 26 (4) p. .

214 [Mrc/Unisa Crime ()] *Annual Report for South Africa based on the National Injury Mortality Surveillance System*,
215 Mrc/Unisa Crime . 2008. 2009. 2012 Dec 26. (Violence and Injury Lead Programme. A profile of fatal injuries
216 in South Africa)

217 [Lal] *Biobrane improves wound healing in burned children without increased risk of infection*, S Lal .

218 [Rennekampff] 'Debridement of burn wounds with a water jet surgical tool'. H O Rennekampff . *Burn.* 2006 32
219 (1) p. .

220 [Burrows et al. ()] 'Fatal injuries among urban children in South Africa: risk distribution and potential for
221 reduction'. S Burrows , A Van Niekerk , L Laflamme . *Bull World Heal Organ* 2010. 88 (4) p. .

222 [Hankins et al.] 'Hot beverage burns: 11-year experience of the Yorkshire Regional Burns Centre'. C L Hankins
223 , X Q Tang , A Phipps . *Burns.* 2006 32 (1) p. .

224 [Herbert ()] 'Patterns of paediatric injury in South Africa: an analysis of hospital data between 1997 and'. H K
225 Herbert . *J Trauma Acute Care Surg* 2006. 2012. 73 (1) p. .

226 [Ahn and Maitz ()] 'The true cost of burn'. C Ahn , P K Maitz . *Burns* 2012. 38 (7) p. .

227 [Whitaker ()] 'The use of Biobrane by burn units in the United Kingdom: a national study'. I S Whitaker .
228 *Burns* 2007. 33 (8) p. .

229 [Tenenhaus et al. ()] 'Treatment of deeppartial thickness and indeterminate depth facial burn wounds with
230 waterjet debridement and a biosynthetic dressing'. M Tenenhaus , D Bhavsar , H O Rennekampff . *Injury*
231 2007. 38 p. . (Suppl)

232 [Cox et al. ()] 'Treatment of paediatric burns with a nanocrystalline silver dressing compared with standard
233 wound care in a burns unit: a cost analysis'. S G Cox , H Cullingworth , Rode . *S Afr Med J* 2011. 101 (10)
234 p. .

235 [Ou ()] 'Use of Biobrane in scald burnsexperience in 106 children'. L F Ou . *Burns* 1998. 24 (1) p. .