

1 Prediction of Difficulty of Laparoscopic Cholecystectomy by 2 Preoperative Ultrasonography: A Randomized Control Trial

3 Dr. Kulbhushan Haldeniy¹, Dr. Puneet Malik² and Dr. Rohit Maheshwari³

4 1

5 *Received: 6 December 2013 Accepted: 3 January 2014 Published: 15 January 2014*

6 **Abstract**

7 The aim of this study was to determine whether the preoperative USG finding can predict the
8 difficulty during the laparoscopic cholecystectomy and its conversion. 500 patients undergoing
9 Laparoscopic cholecystectomy at Sawai Mansingh Medical College and attached Hospital were
10 included. Sonographic parameters like Gall Bladder wall thickness, antero posterior diameter
11 of Gall Bladder in fasting state, impacted gall stone, CBD diameter were taken into
12 consideration and difficulties in terms of time taken for surgery, cystic duct injury; cystic
13 artery injury and lead to conversion were analyzed. Of the 400 cases, 24 (6.0
14

15

16 **Index terms**— gall bladder, cholelithiasis, ultrasonography, laparoscopy, cholecystectomy

17 **1 Introduction**

18 ouret performed the first laparoscopic cholecystectomy (LC) in 1987 in France. Now for symptomatic cholelithiasis
19 LC is considered as GOLD STANDARD surgery. Cost effectiveness, quick recovery and consumer satisfaction
20 (patient acceptance) are the major criteria for the procedure of choice for any disease. Though set up and
21 instrument are more expensive for LC, but earlier return to work and the shorter hospital stay make the procedure
22 more cost effective. [1][2][3][4] Patient satisfaction is indeed higher with LC. Thus performance of LC enables
23 hospitals to treat more patients of gall stone disease at a lower cost, with better patient satisfaction as compared
24 to OC. Many centers now perform LC as a day care operation and almost all centers discharge patients on the
25 first post-operative day. Difficulty faced during operation may require relative or emergency conversion to open
26 procedure or aspect of planning laparoscopic surgery. With the help of accurate prediction, high risk patients
27 may be informed beforehand and they may have a chance to make arrangements regarding their professional
28 and family commitments. The surgeons also may have to schedule the time and the team for the operation
29 appropriately. Patients predicted to have a high risk of conversion or difficulties in operation have to be operated
30 on by an experienced team these patients are not suitable for resident training. When operating on a high risk
31 patient there should be a low threshold for conversion, because early conversion shortens the operating times and
32 decreases morbidity. [6][7][8][9] Patient selection is very important for day care procedures, and low risk patients
33 have to be selected ??5,11,12 Patients predicted to have high risk have to be scheduled for longer hospitalization
34 and more intensive facilities. Hospitals have to plan admissions and bed vacancy accordingly. Ultrasonography
35 is the most common screening test for cholecystitis and cholelithiasis. It is easy, non invasive, safe and a highly
36 accurate imaging technique. It detects gallstones with accuracy of more than 95%. Several studies have been
37 carried out to assess the risk of conversion preoperatively. Kama et al conducted retrospective study. ??0 Many
38 studies have found thickened gall bladder wall in USG to be an accurate predictor of difficulties that might be faced
39 during LC. ??0, ??1, ??2 This is despite the fact that ultrasound is a highly observer dependent investigation.
40 While most of the previous studies in the literature were retrospective and evaluated various risk factors in terms
41 of conversion to OC, our is a prospective study analyzing these risk factors as preoperative predictors on USG
42 not only for conversion of LC to OC but also for anticipating difficulties in LC. All patients included in the study
43 underwent detailed history taking and clinical examination. All routine investigations including liver function
44 test and coagulation profile were done. Pre-operative ultrasound was done for all patients and following criteria

12 I) CONVERSION TO OPEN CHOLECYSTECTOMY

45 were assessed :-Gall Bladder wall thickness-more than or less than 3 mm, Antero Posterior Gall Bladder diameter
46 in fasting state-less than 3 cm and more than 5 cm, Impacted gall stones, CBD diameter-more than or less than
47 6 mm.

48 2 II.

49 3 Materials and Methods

50 The selected patients were then told about the procedure and written informed consent was taken. Patients were
51 also informed about the conversion to open cholecystectomy.

52 Standard four port technique with patient in American position was used for laparoscopic cholecystectomy.
53 Intra-operatively following criteria's were assessed: -Duration of surgery from the insertion of Veress needle to
54 the extraction of gallbladder more than or less than 90 minutes, Spillage of bile and stone present or not, injury
55 to duct, cystic artery and any other complication during surgery. Procedure was defined as easy or difficult
56 based on following criteria: Easy and difficult criteria Reasons for conversion:-Difficult dissection (adhesions at
57 Calot's triangle), Unclear anatomy (short cystic duct, dilated cystic duct), Injury to biliary tract or other viscera,
58 Bleeding during dissection.

59 4 III.

60 5 Results

61 The study was conducted in a total of 400 patient's age between 17 to 75 years. After proper evaluation and
62 assessment, all patients were planned for laparoscopic cholecystectomy. The female to male ratio was 2.6: 1. The
63 above sex distribution shows that the gall bladder diseases have a higher frequency in females than in males in
64 all age groups.

65 6 c) Gall bladder wall thickness

66 The maximum gall bladder wall thickness was found to be 6mm and minimum 1.6mm with mean thickness
67 2.4mm. There were 156 (39%) patients with gall bladder wall thickness more than 3mm.

68 7 d)

69 There were 144 patients (36%) with contracted/distended GB. The remaining 256 patients had gallbladder of
70 normal volume.

71 8 e) Stone impacted at the neck of Gall bladder

72 There were 88(22%) patients with gall stone impacted at the neck of gall bladder or Hartman's pouch. The
73 rest of the 312 patients had mobile gall stones. The patients with gall bladder full of stones with no mobility of
74 the stones due to gallbladder being totally packed with stones was taken as stone impacted at the neck of gall
75 bladder.

76 9 f) Common bile duct dilatation more than 6mm

77 There were only 12 (3%) patients with common bile duct diameter more than 6mm. This could be due to the
78 reason because the patients with common bile duct stones were excluded from the study.

79 10 g) Prediction of the difficult cases on Ultrasonography

80 The total number of cases predicted to be difficult on ultrasonography was 144 patients (36%).The remaining
81 256 cases (64%) were predicted to be easy.

82 11 h) Total number of difficult laparoscopic surgeries

83 The total number of laparoscopic cholecystectomy attempted was 400 out of which 135 (33.75%) were found to
84 meet the difficulty criteria. The remaining 265(66.25%) cases were easy on laparoscopic cholecystectomy.

85 12 i) Conversion to open cholecystectomy

86 Out of total 400 cases 24 (6.0%) cases were converted to open procedure. In the remaining 376 cases the
87 laparoscopic cholecystectomy was completed successfully (including the difficult cases which were not converted
88 to open cholecystectomy). The various reasons for conversion were 20 (5.0%) cases due to dense adhesions in
89 the calot's triangle, and gallbladder with the surrounding viscera that is colon and omentum and bleeding due
90 to tear of cystic a) Age Distribution

91 The age group of the patients ranged from 17 to 75 years with mean age 40 years. The maximum artery, 3
92 (0.75%) cases due to gangrenous GB one case (0.25%) due to cholecysto-colic fistula. IV.

93 13 Discussion

94 LC is the procedure of choice for symptomatic cholelithiasis. [16][17][18] The most common reasons for difficulty
95 during LC are severe inflammation, dense adhesions and bleeding. 6 Severe inflammation and high vascularity as
96 in the case of acute cholecystitis, lead to difficulty in defining the anatomy of Calot's triangle and is associated
97 with increased risk of bleeding. Besides this, impacted stone at the neck may be associated with difficulty in
98 gripping the inflamed and friable gallbladder. Dense adhesions also make it difficult to define the anatomy of the
99 Calot's triangle. Separation of a gall Similarly, prediction of difficult laparoscopic cholecystectomy preoperatively
100 leads to better preparation on behalf of surgeon for a challenging procedure and chances of conversion. Early
101 conversion in such patients is proved to decrease postoperative morbidity. 1,6,8 Difficult operation can also be
102 scheduled early in the operation theatre day. Such patients should be operated by more experienced surgical
103 team. Also surgeons in the early phase of their learning curve should refer such patients to more experienced
104 centers.

105 Several studies have been done to asses predictive factors for conversion of LC to OC. Our study has assessed
106 risk factors for difficulty in LC also. Conversion has been included as one of the criteria for difficulty. In most
107 previous studies adhesions, unclear anatomy and bleeding have been found to be the major factors necessitating
108 conversion to OC. In their study of 628 patients posted for elective LC, Sanabria et al, had to convert 32 patients
109 to OC. 6 In our study, dense adhesions causing problems in dissection, defining anatomy, spillage of bile and
110 stone and bleeding have been taken as criteria for difficulty. In addition increased operating time and conversion
111 have been taken as criteria for difficult LC.

112 Daradkeh et al studied the overall difficulty scores (ODS) of LC. 14 and found that "gall bladder wall thickness
113 and CBD diameter were found to be significant predictors of ODS." Some studies found distended gall bladder as
114 the major predictor of conversion while others have implicated a contracted gall bladder. 13,15 a) Gall bladder
115 wall thickness In our study, thickened gall bladder wall was found to be a significant predictor of difficulty
116 in LC ($p<0.001$). Thickened gall bladder wall was significantly associated with adhesions ($p<0.002$), bleeding
117 ($p<0.0001$), and increased operating time ($p<0.0001$). Out of 24 patients who were converted, 16 have thickened
118 GB wall. According to Fried et al patients with thickened gall bladder wall have 8 times more chances of
119 conversion to OC. 5 They have associated a thickened gall bladder wall with difficulties in exposure of biliary
120 anatomy. "These factors contributed to difficulties in retraction and increased chances of liver tears and bleeding
121 from gallbladder bed, thus causing increased bleeding in these patients. A consequent increase in operating time
122 was also noticed." b) Gall bladder diameter Gall bladder size also predicted difficult LC in our study. Gall bladder
123 transverse diameter was found to be significant as a predictor of a difficult LC ($p=0.0060$). This is in accordance
124 to Velden et al contracted gall bladder on ultrasound examination (after overnight fasting) is associated with
125 adhesions, problems of exposure and difficulty in separation of gall bladder from the liver. In a study conducted
126 by Lal et al, contracted gall bladder was found to be one of the predictors for conversion of LC to OC. 13 Many
127 others have identified a contracted gall bladder as a potential factor for conversion. ??0,19,20,21 In our study
128 only increased operative time ($p=0.0042$) and adhesions ($p=0.0086$) were found to be significantly associated
129 with GB transverse diameter. Bleeding ($p =0.0710$) were found to be statistically insignificant.

130 14 c) Impacted stone in GB

131 In our study impacted stone and certain complications have correlation, so this is a good predictor of conversion
132 to the open procedure, which is contrary to the findings in other studies in which stone impaction is shown to have
133 a moderate correlation. 1,9 The main difficulty with stone impacted at the neck or Hartman's pouch is that it
134 hinders holding of the gallbladder during dissection, and also due to impacted stone, the gallbladder is distended
135 with mucus forming the mucocele of the gallbladder, which is even more difficult to hold from the fundus. In our
136 study only increased operative time was found to be significantly associated with GB transverse diameter with p
137 = 0.0035. Presence of adhesions ($p=0.345$) and bleeding ($p =0.810$) were found to be statistically insignificant.

138 15 d) CBD diameter

139 Out of the four ultrasonic parameters studied common bile duct diameter more than 6mm, the number of cases
140 in our study was not enough to give a significant statistical value. This is due to the reason that the patients
141 with common bile duct stones were not included in the study.

142 16 e) Conversion

143 In our study 24 patients required conversion to open cholecystectomy. Thus a conversion rate of 6% was observed.
144 This is in accordance with the conversion rates observed in most recent series (3 to 5%). 5, ??0,14 Reasons for
145 conversion in the 20 patients were dense adhesions and bleeding due to injury to cystic artery. In these patients
146 had thickened gall bladder wall, impacted stone and abnormal GB diameter. The 3 cases were converted due to
147 presence of gangrenous GB one case due to cholecysto-colic fistula.

148 Though, GB transverse diameter and thickened gall bladder wall and impacted stones in GB on preoperative
149 ultrasound were found significant in univariate analysis, multivariate analysis concluded that only thickened gall
150 bladder wall and GB transverse findings. 15 Their study however, was a retrospective study. Difficulties were
151 encountered when a distended gall bladder was associated with a large stone impacted diameter were significant

152 factors in prediction of a difficult LC and conversion to open. USG is most useful in providing accurate information
153 on several parameters like gall bladder wall thickness, gall bladder size, CBD diameter and CBD stones, impacted
154 stones and any anatomical variations of the biliary tract. Thick gall bladder wall is a finding which may show that
155 more adhesions may be found during surgery. Common bile duct dilatation may give an idea about the possibility
156 of common bile duct stones. The impaction of stone at the neck of gallbladder followed by the gallbladder wall
157 thickness and contracted gallbladder were the most accurate predictors of the potential operative difficulty and
158 conversion to open procedure. Thus a careful preoperative USG by an experienced radiologist using state of the
art instrument is indispensable while planning a laparoscopic cholecystectomy.

Figure 1:

2

Table1 : Correlation of ultrasonographic prediction and difficulty in performing laparoscopic cholecystectomy conversion to open procedure (Table 1)

Sensitivity of ultrasonographic prediction = 85.92%

Specificity of ultrasonographic prediction = 89.43%

Positive predictive value (of cases to be difficult on ultrasonography) = 80.55%

Negative predictive value (of cases to be easy on ultrasonography) = 92.57%

Percentage of false negative = 14.07%

Percentage of false positive tests = 10.56%

N No of cases

difficult on

surgery

NO of cases with GB wall thickness > 3mm

Sensitivity of ultrasound to predict the conversion open procedure was = 75%.

Specificity = 66.48%,

Positive predictive value = 12.5%.

Negative predictive value = 97.65%

Percentage of false negative was = 33.33%.

Percentage of false positive tests was =33.51%

No of cases

No of cases

of

cases

converted converted

to

open to open

surgery

surgery

easy on

surgery

102 54

16 140 156

33 211

08 236 292

135 265

24 376 400

Total

Sensitivity of gall bladder wall thickness to predict difficulty in laparoscopic surgery was 75.55%,

Specificity 79.62%,

Positive predictive value 65.38%,

Negative predictive value 86.47%

Sensitivity of gallbladder wall thickness to predict conversion to open cholecystectomy was 66.66%,

Specificity 62.76%,

Positive predictive value 10.25%,

Negative predictive value 96.72%

Figure 2: Table 2 :

3

(Table 3)

No of cases difficult on surgery	No of cases easy surgery	No of cases on converted to open surgery	No of cases not converted to open surgery	Total
----------------------------------	--------------------------	--	---	-------

No of cases with contracted and distended GB

98 46

14

130 144

No of cases without contracted and distended GB

37 219

10

246 256

[Note: © 2014 Global Journals Inc. (US)]

Figure 3: Table 3 :

4

cholecystectomy and conversion to open surgery (Table 4)

	N	No of cases	No	No	of	of	converted	to	Total
	No	of	cases	cases	cases	cases	open	open	converted
	of	cases	difficult	easy	on	on	surgery	surgery	surgery
No of cases with impaction of stone at neck of GB	50	38	13	75	88				
No of cases without impaction of stone at neck of GB	85	227	11	301	312				
Total	135	265	24	376	400				
Sensitivity of stone impaction at the neck of gall bladder to predict difficult laparoscopic cholecystectomy was 37.03%, Specificity 85.66%, Positive predictive value 56.81%, Negative predictive value 72.75 and						Sensitivity of the impaction of stone at the neck bladder and conversion to open cholecystectomy 54.16%, Specificity 80.05%, Positive predictive value 14.77%, Negative predictive value 96.47%.			

Figure 4: Table 4 :

5

USG parameter	conversion to open surgery (Table 5)				
	Difficult/	Sensitivity	Specificity	PPV	NPV
Combined	open				
Combined	Difficult	85.92	89.43	80.55	92.57
Combined	Open	75	66.48	12.5	97.65
Wall thickness	Difficult	75.55	79.62	65.38	86.47
Wall thickness	Open	66.66	62.76	10.25	96.72
Contracted GB	Difficult	72.59	82.64	68.55	85.54
Contracted GB	Open	58.33	65.42	9.72	96.09
Impacted stone	Difficult	37.03	85.66	56.81	72.75
Impacted stone	Open	54.16	80.05	14.77	96.47

Figure 5: Table 5 :

160 [Schrenk et al. ()] 'A diagnostic score to predict the difficulty of a laparoscopic cholecystectomy from preoperative
161 variables'. P Schrenk , R Woisetschlager , R Reiger . *Surg Endosc* 1998. 12 p. .

162 [Lal et al. ()] 'A difficult laparoscopic cholecystectomy that requires conversion to open procedure can be
163 predicted by preoperative ultrasound'. P Lal , P N Aggarwal , V K Malik , A C Chakravarti . *J Soc Laparo
164 Surg* 2002. 6 p. .

165 [Vander Velden et al. ()] 'Can sonographic signs predict conversion of laparoscopic to open cholecystectomy'. J
166 J Vander Velden , M Y Berger , H J Bonjer . *Surg Endosc* 1998. 12 p. .

167 [cholecystectomy in an urban teaching hospital Am J Surg ()] 'cholecystectomy in an urban teaching hospital'.
168 *Am J Surg* 1994. 168 p. .

169 [Lo et al. ()] 'Early decision of conversion of laparoscopic cholecystectomy to open cholecystectomy for treatment
170 of acute cholecystitis'. C M Lo , S T Fan , C L Liu . *Am J Surg* 1997. 173 p. .

171 [Wolfe et al. ()] 'Endoscopic cholecystectomy, an analysis of complications'. B M Wolfe , B N Gardiner , B F
172 Leary , C F Frey . *Arch Surg* 1991. 126 p. .

173 [Liu et al. ()] 'Factors affecting conversion of laparoscopic cholecystectomy to open surgery'. C L Liu , S T Fan
174 , Ecs Lai . *Arch Surg* 1996. 131 p. .

175 [Friedgm et al. ()] 'Factors determining conversion of laparotomy in patients undergoing laparoscopic cholecys-
176 tectomy'. Friedgm , J S Barkun , H A Sigman . *Am J Surg* 1994. 167 p. .

177 [Sikora et al. ()] 'Laparoscopic cholecystectomy -can conversion be predicted?'. S S Sikora , A Kumar , R Sexana
178 . *World J Surg* 1995. 19 p. .

179 [Cox et al. ()] 'Laparoscopic cholecystectomy for acute inflammation of the gall bladder'. M R Cox , T G Wilson
180 , A J Luck . *Annal Surg* 1993. 218 p. .

181 [Grace et al. ()] 'Laparoscopic cholecystectomy: a hundred consecutive cases'. P Grace , A Quereshi , A Darzi .
182 *Irish Med J* 1991. 84 p. .

183 [Scott et al. ()] 'Laparoscopic cholecystectomy: a review of 12,397 patients'. T R Scott , K A Zucker , R W
184 Bailey . *Surg Laparosc Endosc* 1992. 3 p. .

185 [Spaw et al. (12991)] 'Laparoscopic laser cholecystectomy: analysis of 500 procedures'. A T Spaw , E J Reddick
186 , D O Oslen . *Surg Lap Endo* 12991. 1 p. .

187 [Daradkeh et al. ()] 'Preoperative ultrasonography and prediction of technical difficulties during laparoscopic
188 cholecystectomy'. S S Daradkeh , Z Suwan , K M Abu . *World J Surg* 1998. 22 p. .

189 [Jansen et al. ()] 'Preoperative ultrasound to predict conversions in laproscopic cholecystectomy'. S Jansen , J
190 Jorgensen , J Caplehorn . *Surg Laparosc Endosc* 1997. 7 p. .

191 [Barkun et al. ()] 'Randomised controlled trial of laparoscopic versus mini cholecystectomy'. J S Barkun , A N
192 Barkun , J S Sampalis . *Lancet* 1992. 340 p. .

193 [Sanabria et al. ()] 'Risk factors in elective laparoscopic cholecystectomy for conversion to open cholecystectomy'.
194 J R Sanabria , S Gallinder , R Croxford , S M Strasberg . *J Am CollSurg* 1994. 179 p. .

195 [Cuschieri et al. ()] 'The European experience with laparoscopic cholecystectomy'. A Cuschieri , F Dubois , J
196 Mouiel . *Am J Surg* 1991. 161 p. .

197 [The Southern Surgeons Club. A prospective analysis of 1518 laparoscopic cholecystectomies New Eng J Med ()]
198 'The Southern Surgeons Club. A prospective analysis of 1518 laparoscopic cholecystectomies'. *New Eng J
199 Med* 1991. 324 p. .