

¹ Angiotensin Converting Enzyme Gene I/D polymorphism
² correlates with complications in HCV infected Egyptian Patients

³ ohamed Y Elsammak M

⁴ Received: 15 October 2011 Accepted: 14 November 2011 Published: 29 November 2011

⁵

⁶ **Abstract**

⁷ Hepatitis C (HCV) infection represents a major health problem in Egypt with a reported
⁸ prevalence of more than 20

⁹

¹⁰ **Index terms**— Angiotenins Converting enzyme gene polymorphism, I/D polymorphism, HCV, PCR

¹¹ **1 INTRODUCTION**

¹² Hepatitis C virus (HCV) infection is the leading cause of chronic liver disease worldwide 1 . HCV infection represents
¹³ a major health problem in Egypt 2 . About 60 to 80% of patients develop chronic infection, which may progress
¹⁴ to complications (e.g. cirrhosis, variceal bleeding and hepatocellular carcinoma) 3 . On the other hand some
¹⁵ patients had HCV latent infection for years and others may have an eventual recovery with sero-positivity as
¹⁶ the only indication of their past HCV infection 4 . Many factors, including age, gender, alcohol consumption
¹⁷ 5 , body mass index, steatosis 6 , and concomitant other viral infections (e.g. human immunodeficiency virus
¹⁸ (HIV), hepatitis B virus) 7 affect disease outcome but are insufficient to explain it. Immunologic and genetic
¹⁹ factors may also play an important role and are believed to have an impact on the outcome of HCV infection.
²⁰ Studies among monozygotic twins suggest that host genetic factors may account for 50% or more of the variability
²¹ in the major outcomes in infectious diseases, ?? 9 . Different studies have illustrated a genetic predisposition
²² for viral infections ??0 , 11 ,12 . The ACE gene insertion/deletion (I/D) polymorphism was first identified in
²³ 1990. The geneencoding ACE (or dipeptidyl carboxy peptidase1: DCP1) is located on chromosome 17q35 and
²⁴ consists of 26 exons. A 250-bp deletion/insertion polymorphism exists in intron 16 of the ACE gene and the
²⁵ deletion variant is associated with higher serum levels of the enzyme. The ACE gene insertion/deletion (I/D)
²⁶ polymorphism has been investigated in several diseases 13,14,15 . The angiotensin converting enzyme (ACE)
²⁷ gene I/D polymorphism influences the production of angiotensin II (ANG II), whose role in the regulation of
²⁸ fibrosis in the liver and other organs is increasingly recognized 16 . Recently, an inflammatory role for ACE gene
²⁹ has been suggested 17 . A Finnish study revealed an association between the deletion variant (D) and certain
³⁰ granulomatous disease "sarcoidosis 18 with a possible role in altering the cytokines level during the inflammatory
³¹ process. This is alteration and susceptibility of disease progression is mainly evident in certain genotypes of the
³² angiotensin converting enzyme gene 18 . Up to our knowledge, scanty data area available about the distribution
³³ of I/D ACE gene polymorphism in H Global Journal of Medical patients affected with hepatitis C. The current
³⁴ study aimed at investigating whether there is a difference in I/D ACE genotypes distribution in a cohort of HCV
³⁵ Egyptian patients compared to their healthy counterparts and whether there is a significant association between
³⁶ different I/D genotypes and the HCV disease severity.

³⁷ **2 II.**

³⁸ **3 PATIENTS AND METHODS**

³⁹ The study was approved by Alexandria University Ethical committee. Patients included in this study were seen in
⁴⁰ the Internal Medicine Department of the Medical Research Institute Teaching Hospital of Alexandria University,
⁴¹ Egypt. All patients and control subjects gave their written informed consent before participating in the study.
⁴² The current study included 2 groups: Hepatitis C (HCV) patients' group comprised of 78 patients (56 men and
⁴³ 22 women) aged (Mean \pm SD) 47.5 ± 7.0 years and a sex and aged matched control group comprised of 42 control
⁴⁴ subjects (30 men and 12 women) aged 45.2 ± 7.5 years.

7 RESULTS

45 Exclusion criteria included cases of hepatitis B infection, autoimmune hepatitis, metabolic liver diseases
46 (haemochromatosis, Wilson's disease, non alcoholic steatohepatitis), history of alcohol consumption or malig-
47 nancy.

48 The followings were done for the patients and control subjects: full clinical examination including history
49 taking, blood pressure measurement and abdominal ultrasound examination with evaluation of different
50 hepatobilary parameters including portal, hepatic and mesenteric veins diameters. Complete urine and stool
51 examination 19 . Venous blood samples were taken from each subject after an over night fast. Blood samples were
52 collected in plain tubes, centrifuged and analyzed for fasting serum glucose, urea, creatinine, total serum protein,
53 albumin, liver enzymes (Aspartate aminotransferase and alanine aminotransferase), gamma glutareyl transferase,
54 alkaline phosphatase, total and direct bilirubin. These were measured using a Konelab Chemistry analyzer 20
55 (Thermo Electron Oy, Vantaa, Finland. <https://www.thermo.com>). Citrated and EDTA samples were taken
56 for prothrombin activity and full blood count. The remaining serum was used for testing HCV antibodies.
57 The presence of anti-HCV antibodies was determined in serum samples by enzyme linked immunosorbent assay
58 (ELISA-II; Ortho Diagnostic Test Systems, Raritan, NJ, USA).

59 Genomic DNA was isolated from nucleated blood cells (separated from EDTA blood sample) using standard
60 technique 21 . DNA samples were kept at -80 0 C till analysed. The I/D polymorphism of the ACE gene was
61 determined according to the method of Rigat et al 22 . Briefly, about 50 to 80 ng DNA samples were amplified
62 in a final volume of 25 ?L containing 1×PCR buffer with 1.5 mmol/L MgCl2, 2 unit Taq DNA polymerase,
63 100 ?mol/L dNTP, and 0.5 ?mol/L of each primer and 5% DMSO (dimethyl sulphoxide). The sequences of the
64 sense and antisense primers were 5'-CTG GAG ACC ACT CCC ATC CTT TCT-3' and 5'-GAT GTG GCC
65 ATC ACA TTC GTC AGA T-3', respectively. DMSO was included in the PCR to prevent underestimation of
66 heterozygotes and overestimation of D/D genotype 23 PCR was performed in a GeneAmp, thermocycler (Biorad,
67 USA). Samples were denatured for 1 minute at 94°C and then cycled 30 times through the following steps: 45
68 seconds at 94°C, 1 minute at 62°C, and 1 minute at 72°C. PCR products were electrophoresed in 1.6% agarose
69 gel and visualized directly with ethidium bromide staining. The insertion allele (I) was detected as a 490-bp
70 band, and the deletion allele (D) was detected as a 190-bp band. While The I/I genotype was detected as a single
71 band of 490 Bp, the D/D genotype was detected as a single band of 190-bp while the I/D was detected by the
72 presence of two bands a 490-bp and 190 -bp. To ensure quality control, genotyping was performed with blinding
73 to case/control status, and random samples of cases and controls were tested twice by different persons, and the
74 results were concordant for all masked cases.

75 4 III.

76 5 STATISTICAL ANALYSIS

77 Prevalence of alleles and genotype among cases and control subjects were counted and compared with Hardy-
78 Weinberg predictions 24 . Chi-square test (Fisher's exact test) was used to test the distribution of the different
79 genotypes in the different groups. P value of < 0.05 was considered statistically significant. Statistical analysis
80 was performed using SPSS 11.5 statistical Package.

81 6 IV.

82 7 RESULTS

83 Clinical and biochemical data of the studied groups are illustrated in table1. There was no significant age
84 difference between the different groups enrolled in this study. Ultrasound findings showed a significantly
85 enlargement of the liver right lobe and spleen diameters and portal vein diameters in HCV patients compared
86 to the health controls (P<0.05) Spleenic vein diameter correlated positively with portal vein diameter and
87 longitudinal spleen length (r: 0.649 P: 0.001 & r:0.37 &P:0.02).

88 The different genotypes were in agreement with Hardy-Weinberg equilibrium. Analysis of the I/D angiotensin
89 gene polymorphism revealed a significant difference for the different genotypes between the different groups.
90 (P<0.021). Figure 1 shows an illustration of the different genotypes of I/D Ace gene polymorphism. HCV
91 patients group showed a higher percentage of D/I and DD genotypes than the control group. Table ??I shows the
92 frequency of each genotype in the different groups. Multivariate analysis did not show a significant confounding
93 effect of age, sex, history of schistosomal infection on the ACE genotyping results.

94 HCV patients were stratified according to the different I/D genotype and the different parameters were
95 analyzed (table ??II). There was a significant difference within the three groups, namely I/I, D/I and those
96 with D/D genotype for total leucocytic count, Child Pugh score, portal vein diameter, ALT and plasma glucose
97 glucose(P<0.05).

98 Patients with D/I and those with D/D had significantly higher total leucocytic counts, Child Pugh scoring,
99 portal vein diameter, ALT (alanine amino transferase) and plasma glucose (P values: 0.032, 0.027, 0.0495, 0.029
100 and 0.043 respectively).

101 V.

102 8 DISCUSSION

103 HCV infection is characterized by continuous inflammation that slowly results in liver fibrosis that eventually
104 may result in the development of hepatocellular carcinoma. Hepatic fibrosis in HCV affected patients has been
105 attributed to increased cytokines production as a result of HCV infection and uncontrolled activation of the
106 immune system. Other factors that may contribute in the progression of hepatic fibrosis, include male sex,
107 older age, longer duration of HCV infection, high levels of alcohol consumption and HIV co-infection. These
108 factors have been associated with more severe liver damage in patients with chronic hepatitis C and accelerated
109 HCV-related liver fibrosis.

110 Recent reports have revealed that the reninangiotensin system (RAS) plays an important role in the liver
111 fibrosis development with RAS components significantly up-regulated during the liver fibrosis development.
112 Furthermore, it has been recently reported that the combination treatment with IFN and ACEblockers exerted
113 a more potent inhibitory effect on murine liver fibrosis development than either single agent, . Collectively these
114 reports point to an important role that RAS system plays in the development of HCV complications.

115 The current study centered on exploring the possibility of the presence of genetic factors affecting the RAS
116 specially the polymorphism of the Angiotensin Converting Enzyme gene, that might influence the susceptibility
117 to HCV infection and development of complications. The study evaluated the distribution of I/D polymorphism
118 of the angiotensin converting enzyme gene in HCV patients and an age and sex matched control group. There
119 was a significantly higher percentage of HCV Egyptian patients having the I/D and DD genotypes than the
120 healthy controls. In HCV patients, the D allele carriers had a significantly higher total leucocytic counts, alanine
121 aminotransferase, plasma glucose and had a higher Child Pugh scoring. Our results are in agreement with
122 Fabris et al who found a carriers of the D allele especially female patients have a poor outcome with increased
123 complication post hepatic transplantation .

124 The current study also showed an association between the D allele and increased plasma glucose level in HCV
125 positive patients. Insulin resistance is a known complication of HCV patients. Previously, increased insulin
126 resistance has been documented in HCV positive patients that correlated with the HCV infectivity and was
127 attributed to increase cytokines production in chronic HCV patients. Recently, studies have also demonstrated that
128 ACE insertion/deletion (I/D) polymorphism is associated with development of insulin resistance and eventually
129 diabetes mellitus complications in a different ethnic populations.

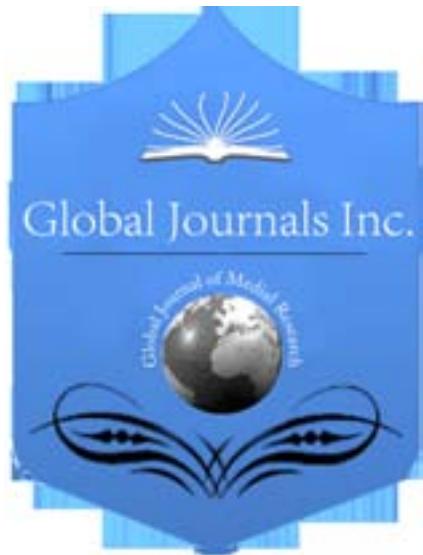
130 The findings of increased blood glucose in D allele carriers of HCV patients is in keeping with the findings of
131 Mittal et al who clearly demonstrated an association of the components of metabolic syndrome especially fasting
132 glucose and the D allele of ACE gene polymorphism . Similarly in Iranians, the D allele of the angiotensin
133 converting enzyme gene seemed to be associated with Diabetes mellitus and poor glycemic control. Thus the
134 association found in the current study between elevated blood glucose and the D allele may offer an important
135 rationale for the increased insulin resistance commonly seen in chronic HCV patients. The adverse effect on
136 glycemic control that is seen in our HCV patients may possibly be through end organ damage, fibrosis, and poor
137 inflammatory response³⁶ and control of microvascular blood flow and free radical levels secondary to modulated
138 ACE gene expression.

139 In summary, in Egyptians our results shows an association between D allele of the Angiotenin Converting
140 Enzyme gene and the different complications of HCV infections (namely; higher Child Pugh scoring, portal vein
141 diameter and poor glycemic control. Our findings may be important in detecting HCV who may need more
142 intensive treatment to prevent complications.

143 Future work may concentrate on evaluating whether Angiotensin gene polymorphism may be a factor in
144 determining the response of different antiviral therapies used in HCV infection.

145 9 VI. LIMITATION OF THE CURRENT STUDY

146 1 2 3 4 5


¹Volume XI Issue V Version I © 2011 Global Journals Inc. (US) December

²Volume XI Issue V Version I © 2011 Global Journals Inc. (US) December

³Volume XI Issue V Version I © 2011 Global Journals Inc. (US) December

⁴© 2011 Global Journals Inc. (US)

⁵Volume XI Issue V Version I © 2011 Global Journals Inc. (US) December

1

Figure 1: Figure 1 :

angiotensin
polymorphism in patients with metabolic syndrome
in North Indian population. Chin Med J (Engl).
2011;124:45-8.
36. Nikzamir A, Nakhjavani M, Golmohamadi T, Dibai
L. Association of angiotensin-converting enzyme
gene
metabolic syndrome in

Effect of
converting enzymegene I/D

insertion/deletion polymorphism with

Figure 2:

147 .1 ACKNOWLEDGEMENTS

148 Angiotensin Converting Enzyme Gene I/D polymorphism correlates with complications in HCV infected Egyptian
149 Patients

150 Global Journal of

151 .2 December

152 PCR products were electrophoresed in 1.6% agarose gel and visualized directly with ethidium bromide staining.
153 The insertion allele (I) was detected as a 490-bp band, and the deletion allele (D) was detected as a 190-bp band.
154 DNA samples were amplified using PCR and digested with Taq1b restriction enzyme.

155 [Ausubel et al. ()] , F M Ausubel , R Brent , R E Kingston , D D Moore , J G Seidman , J A Smith , K Struhl
156 . *Current Protocols In Molecular Biology* 1987. Wiley Interscience. (2nd ed)

157 [Fogarty et al. ()] 'ACE gene typing'. D G Fogarty , A P Maxwell , C C Doherty , A E Hughes , N C Nevin .
158 *Lancet* 1994. 343 p. 851.

159 [Chen et al. ()] 'Alcohol and hepatitis C mortality among males and females in the United States: a life table
160 analysis'. C M Chen , Y H Yoon , H Y Yi , D L Lucas . *Alcohol Clin Exp Res* 2007. 31 p. .

161 [Bostan and Mahmood ()] 'An overview about hepatitis C: a devastating virus'. N Bostan , T Mahmood . *Crit
162 Rev Microbiol* 2010. 36 p. .

163 [angiotensin-converting enzyme insertion/deletion polymorphism is associated with phagocytic NADPH oxidase-dependent superoxide
164 'angiotensin-converting enzyme insertion/deletion polymorphism is associated with phagocytic NADPH
165 oxidase-dependent superoxide generation: potential implication in hypertension'. *Clin Sci (Lond)* 2009. 116
166 p. .

167 [Beohar et al. ()] 'Angiotensin-I converting enzyme genotype DD is a risk factor for coronary artery disease'. N
168 Beohar , S Damaraju , A Prather . *J Investig Med* 1995. 43 p. .

169 [Rimola et al. ()] 'Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after
170 liver transplantation'. A Rimola , M C Londono , G Guevara , M Bruguera , M Navasa , X Forns , M
171 Garcia-Retortillo , J C Garcia-Valdecasas , J Rodes . *Transplantation* 2004. 78 p. .

172 [Peters and Rockstroh ()] 'Biomarkers of fibrosis and impaired liver function in chronic hepatitis C: how well do
173 they predict clinical outcomes?'. L Peters , J K Rockstroh . *Curr Opin HIV AIDS* 2010. 5 p. .

174 [Elsammak et al. ()] 'Elevated serum tumor necrosis factor alpha and ferritin may contribute to the insulin
175 resistance found in HCV positive Egyptian patients'. M Elsammak , W Refai , A Elsawaf , I Abdel-Fattah ,
176 Abd Elatti , E Ghazal , A . *Curr Med Res Opin* 2005. 21 p. .

177 [Cholet et al. ()] 'Factors associated with liver steatosis and fibrosis in chronic hepatitis C patients'. F Cholet
178 , J B Nousbaum , M Richécoeur , E Oger , J M Cauvin , N Lagarde , M Robaszkiewicz , H Gouérou .
179 *Gastroenterol Clin Biol* 2004. 28 p. .

180 [Alric et al. ()] 'Genes of the major histocompatibility complex class II influence the outcome of hepatitis C virus
181 infection'. L Alric , M Fort , J Izopet . *Gastroenterology* 1997. 113 p. .

182 [Tousoulis et al. ()] 'Genetic polymorphism on type 2 receptor of angiotensin II, modifies cardiovascular risk and
183 systemic inflammation in hypertensive males'. D Tousoulis , N Koumallos , C Antoniades , A S Antonopoulos
184 , C Bakogiannis , A Milliou , K Marinou , E Kallikazarou , E Stefanadi , D Mentzikof , C Stefanadis . *Am J
185 Hypertens* 2010. 23 p. .

186 [Stark et al. ()] 'Genetic susceptibility to respiratory syncytial virus infection in inbred mice'. J M Stark , S A
187 McDowell , V Koenigsknecht , D R Prows , J E Leikauf , Le Vine , A M Leikauf , GD . *J Med Virol* 2002. 67
188 p. .

189 [Kiryluk et al. ()] 'Genetic Susceptibility, HIV infection and the Kidney'. Krzysztof Kiryluk , Jeremiah Martino
190 , Ali G Gharavi . *Clin J Am Soc Nephrol* 2007. 2 p. .

191 [Lin et al. ()] 'Hepatitis B virus markers in Chinese twins'. T M Lin , C J Chen , M M Wu . *Anticancer Res*
192 1989. 9 p. .

193 [He et al. ()] 'Host susceptibility to persistent hepatitis B virus infection'. Ying-Li He , Ying-Ren Zhao , Shu-Lin
194 Zhang , Shu-Mei Lin . *World J Gastroenterol* 2006. 12 p. .

195 [Yoshiji et al. ()] 'Inhibition of renin-angiotensin system attenuates liver enzyme-altered preneoplastic lesions
196 and fibrosis development in rats'. H Yoshiji , J Yoshii , Y Ikenaka , R Noguchi , H Tsujinoue , T Nakatani ,
197 H Imazu , K Yanase , S Kuriyama , H Fukui . *J Hepatol* 2002. 37 p. .

198 [Bataller et al. ()] 'Liver fibrogenesis: a new role for the renin-angiotensin system'. R Bataller , P Sancho-Bru ,
199 P Gines , D A Brenner . *Antioxid Redox Signal* 2005. 7 p. .

200 [Emery (ed.)] *Methodology in medical genetics: an introduction to statistical methods*, Aeh Emery . Emery AEH
201 (ed.) Churchill Livingstone. 1976 p. . (Hardy-Weinberg equilibrium and the estimation of gene frequencies)

9 VI. LIMITATION OF THE CURRENT STUDY

202 [Eurich et al. (2011)] 'Neumann UP Transforming growth factor ?1 polymorphisms and progression of graft
203 fibrosis after liver transplantation for hepatitis C virus-induced liver disease'. D Eurich , M Bahra , S Boas-
204 Knoop , J F Lock , J Golembus , R Neuhaus , P Neuhaus . *Liver Transpl* 2011 Mar. 17 (3) p. .

205 [Baudin ()] 'New aspects on angiotensin-converting enzyme: from gene to disease'. B Baudin . *Clin Chem Lab
206 Med* 2002. 40 p. .

207 [Boyer and Marcellin ()] 'Pathogenesis, diagnosis and management of hepatitis C'. N Boyer , P Marcellin . *J.
208 Hepatol* 2000. 32 p. . (Suppl. 1)

209 [Rigat et al. ()] 'PCR detection of the insertion/deletion polymorphism of the human angiotensin-converting
210 enzyme gene (DCP1 dipeptidyl carboxypeptidase)'. B Rigat , C Hubert , P Corvol , F Soubrier . *Nucl Acids
211 Res* 1992. 20 p. 1433.

212 [Yoshiji et al. ()] 'Possible role of vascular endothelial growth factor'. H Yoshiji , S Kuriyama , H Fukui . *Tumour
213 Biol* 2002. 23 p. . (Angiotensin-Ifibrosis and hepatocellular carcinoma)

214 [Peters et al. ()] 'Quick Kato smear for field quantification of Schistosoma mansoni eggs'. P A Peters , M El
215 Alamy , K S Warren , A A Mahmoud . *Am J Trop Med Hyg* 1980. 29 p. .

216 [Bona et al. ()] 'Rate of cirrhosis progression reduced in HIV/HCV co-infected nonresponders to anti-HCV
217 therapy'. De Bona , A Galli , L Gallotta , G Guzzo , A Alagna , L Lazzarin , A Uberti-Foppa , C . *New
218 Microbiol* 2007. 30 p. .

219 [Moreno et al. ()] 'Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor
220 blocker to hepatic stellate cells in rats'. M Moreno , T Gonzalo , R J Kok , P Sancho-Bru , M Van Beuge , J
221 Swart , J Prakash , K Temming , C Fondevila , L Beljaars , M Lacombe , P Van Der Hoeven , V Arroyo , K
222 Poelstra , D A Brenner , P Ginès , R Bataller . *Hepatology* 2010. 51 p. .

223 [Fabris et al. ()] 'Sex-related of angiotensin-converting enzyme polymorphisms on fibrosis progression due to
224 recurrent hepatitis C after liver transplantation'. C Fabris , P Toniutto , D Bitetto , R Minisini , E Fornasiere
225 , C Smirne , M Pirisi . *J Gastroenterol* 2007. 42 p. .

226 [Darwish et al. ()] 'Study of the high prevalence of HCV in Egypt'. N M Darwish , M O Abbas , S I Hady , T
227 A Mohammed . *J Egypt Public Health Assoc* 1995. 70 p. .

228 [Pietinalho et al. ()] 'The angiotensin-converting enzyme DD gene is associated with poor prognosis in Finnish
229 sarcoidosis patients'. A Pietinalho , K Furuya , E Yamaguchi . *Eur Respir J* 1999. 13 p. .

230 [Pietinalho et al. ()] 'The angiotensin-converting enzyme DD gene is associated with poor prognosis in Finnish
231 sarcoidosis patients'. A Pietinalho , K Furuya , E Yamaguchi , K Kawakami , O Selroos . *Eur Respir J* 1999.
232 13 p. .

233 [Mcglynn and London (2011)] 'The global epidemiology of hepatocellular carcinoma: present and future'. K A
234 Mcglynn , W T London . *Clin Liver Dis* 2011 May. 15 (2) p. .

235 [Burtis and Ashwood ()] *Tietz Fundamental of Clinical Chemistry, 4th edn Philadelphia*, C A Burtis , E R
236 Ashwood . 1996. W.B. Saunders.

237 [Guobuzaite et al. ()] 'Viral clearance or persistence after acute hepatitis C infection: interim results from a
238 prospective study'. A Guobuzaite , S Chokshi , L Balci?niene , A Voinic , A Stikleryte , K Zagminas , A
239 Ambrozaitis , N Naoumov . *Medicina (Kaunas)* 2008. 44 p. .