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5

Abstract6

Diabetic nephropathy (DN) is the major cause of chronic kidney disease (CKD) which7

normally leads to end stage renal disease (ESRD) or dialysis. Despite vigorous management8

including treatment of hypertension, glyceamic control and the utilization of inhibitors of9

renin angiotensin system (RAS), a significant proportion of diabetic patients still develop10

CKD and progress to ESRD. Advances in understanding of the pathogenesis and pathology of11

DN have made it clear that DN occurs as a result of imbalance between causative factors and12

endogenous protective factors. To emphasize this concept, this review will focus on some of13

the current knowledge concerning both causative and endogenous protective factors of DN.14

15

Index terms— diabetic nephropathy, causative factor, protective factor, protein kinase c, connective tissue16
growth factor, nuclear factor kappa b, osteopontin, rea17

1 Introduction18

iabetic nephropathy (DN), a common and severe complication of Diabetes mellitus (DM), is the major cause of19
chronic kidney disease (CKD) which normally leads to end stage renal disease or dialysis. It is estimated that20
the number of people with diabetes will double by 2030 around the world, and the situation is more serious in21
developing country [1,2]. The mortality of dialysis patients with DN is higher than that of non-diabetic patient22
[3]. Thus, the thorough understanding of pathophysiology of DN will be one of the most important medical23
concerns in the future.24

Numerous efforts have been made to investigate the molecular mechanism of DN with an aim to identify25
causative factors. The data indicated that hemodynamic and metabolic factors contribute to the development26
of DN [4][5][6]. Hemodynamic factors include alterations in flow and pressure, and the activation of renin-27
angiotensin system (RAS) [3]. Hyperglycemia related pathways are also activated, which lead to the formation28
of advanced glycation end products (AGEs), over-expression of protein kinase C (PKC), increased oxidative29
stress [5,6]. Clinical strategies based on some of these causative factors for preventing DN, include inhibition of30
RAS via angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB); endothelin31
antagonists [7,8]. However, recent studies demonstrate that these clinical strategies only delay but cannot stop32
the progression of DN [9,10].33

Advances in understanding of the pathogenesis and pathology of DN have made it clear that DN occurs as a34
result of imbalance between causative factors and endogenous protective factors (Fig. ??). Both aspects of DN35
mechanisms provide potential targets for disease prevention. To emphasize this concept, this review will focus36
on some of the current knowledge concerning both causative factors and endogenous protective factors.37

2 Causative Factors38

The most significant changes which characterize DN include glomerular and tubular hypertrophy, thickening of39
the peripheral glomerular basement membrane, mesangial expansion, glomerulosclerosis and tubulointerstitial40
fibrosis [11]. These structural changes occurs as a result of an interaction between hemodynamic and metabolic41
factors, and finally lead to increased glomerular filtration rate (GFR), proteinuria, systemic hypertension and42
the loss of renal function (4,12). Numerous efforts have been made to study the major causative molecules43
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5 C) CONNECTIVE TISSUE GROWTH FACTOR

or pathways which include AGE, PKC, NF-?B, CTGF, ROS, Osteopontin (Fig. 2). Advanced glycation end44
products (AGEs) as a result of chronic hyperglycemia and oxidative stress have been postulated to play major45
roles not only in the development of DN, but also in a range of cardiovascular complications [13,14]. It is reported46
that AGE exert toxicity via three mechanisms: deposition, in situ glycation and receptor interaction [6]. Among47
these three mechanisms, the interactions between AGEs and their receptors (RAGE) play a major role in the48
progress of DM, especially DN. Its receptor is expressed on the surface of kidneys endothelial cells, podocytes,49
monocytes/macrophages, tubular and mesangial cells [15,16]. Binding of AGEs to the RAGE on these cell types50
will stimulate oxidative stress generation, activate intracellular molecules such as PKC, TGF -? , VEGF and51
NF-?B, evoke inflammatory and fibrogenic reactions, thereby causing progressive alteration in renal architecture52
and loss of renal function in DN [6,17]. The function of AGE-RAGE signaling pathway in the progress of DN53
has been proved by using the double transgenic mice mode which over expresses both iNOS and RAGE [18]. In54
this study, transgenic mice developed glomerular lesions rapidly, which could be prevented by AGEs inhibitor55
[18]. ??oulis et al. (1996) initiated a research which also confirmed the beneficial effect of an AGE inhibitor56
Aminoguanidine in reducing the AGEs levels in blood and tissue of diabetic rats [19]. Similar beneficial effect57
was observed by using alagebrium, a putative AGEs cross-link breaker, to treat DM rodent model [20]. However,58
clinical trials for these AGE inhibitors were stopped due to toxicity of these inhibitors [21]. Thus, these studies59
provide further evidence that AGEs is a promising therapy target for DN and efforts should be made to find new60
inhibitor of AGEs for treatment of DN.61
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4 b) Protein Kinase c63

Protein kinase C (PKC) belongs to the family of serine threonine kinase that act as an intracellular signal64
transduction system for many hormones and cytokines Diabetic Nephropathy: Causative and Protective Factors65
[22]. PKC has 15 different isoforms, many of which have been indicated to be involved in diabetic complications66
[9]. Among 15 isoforms of PKC, ?, ?, and ? isoforms have been most consistently implicated in DN. In67
DN, PKC isoforms, activated by enhanced diacylglycerol (DAG) and increased activity of polyol pathway,68
involves in numerous cellular pathways including NADH, ROS, Na+/K+ ATPase, Ang?, MAPK, VEGF, TGF-?69
and finally leads to series of physiological and structure changes such as endothelial dysfunction, glomerular70
basement membrane thickening, extracellular matrix accumulation, mesangial expansion, renal tubular fibrosis71
and glomerulosclerosis [9,10,23].72

A range of novel compounds has been recently examined to inhibit PKC dependent pathways in DN.73
Ruboxistaurin, a selective inhibitor of the PKC-?, could normalize glomerular hyperfiltration, attenuate74
histological injury and functional decline, and reduce TGF-? levels and proteinuria [24]. A randomized clinical75
study has been carried out, in which the patients with DN took ruboxistaurin orally for one year. The study76
showed that DN patients treated with ruboxistaurin daily had a 24% greater decline in albuminuria than those77
given the placebo, and they had a stable estimated glomerular filtration rate as well [25]. In a recent study78
conducted by Bhattacharya et al. (2013), it was found that the upregulation and activation of PKC isoforms ?,79
?, and ? in the renal tissue of diabetes rats play a detrimental role in the pathogenesis of DN by accumulating of80
extracellular matrix through upregulation of TGF-?, fibronectin and type ? collagen [23]. Treatment of diabetic81
rat with D-Saccharic acid 1, 4-lactone (DSL) could help to ameliorate alloxaninduced upregulation of PKC82
isoforms ?, ?, and ? as well as the accumulation of fibronectin and collagen [23]. Thus, strategies to target PKC83
pathway using isoform-specific inhibitors could be one of the promising therapeutic options, but well-designed84
large and longterm clinical studies are needed to establish its efficacy for prevention and treatment of DN.85

5 c) Connective Tissue Growth Factor86

Connective tissue growth factor (CTGF), known as insulin-like growth factor-binding protein 8 (IGFBP8) and87
CCN2, is increasingly being implicated in structural and functional changes of diabetic renopathy [26]. It88
is reported that the expression level of CTGF increased in glomerular and tubular of diabetes patients, and89
elevated in both early and late DN in humans [27]. CTGF, stimulated by both hyperglycemia related factors,90
such as AGEs, and hemodynamic stimuli such as angiotensin [28,29], is involved in mesangial cell hypertrophy,91
accumulation of extracellular matrix, epithelial-to-mesenchymal transition of tubular cells [27]. CTGF is also92
a fibrogenic cytokine in the kidney and it is known to be a downstream mediator of the profibrotic effects of93
TGF-? inducing renal fibrosis [30,31]. In TGF-? mediated renal fibrosis, the activated type 1 receptor of TGF-?94
phosphorylates and activates members of the receptor-Smads (R-Smads; Samd2 and Smad 3) which then form95
oligomers with the co-Smad and regulate the expression of target genes in nucleus; Smad7, an inhibitory Smad,96
prevents the recruitment and phosphorylation of Smad2 and Smad3 [12]. Several studies indicated that CTGF97
plays a central role in promoting the TGF-?/Smad signaling activity by decreasing the availability of smad7,98
which is inhibitory for Smad2 and 3 [27,32]. In an animal model of unilateral ureteral obstruction (UUO), it was99
found that CTGF antisense treatment could attenuate tubulointerstitial fibrosis which further confirms the role100
of CTGF on TGF-? inducing renal fibrosis [33]. In a study conducted by Adler et al (2010), it was found that101
FG-3019, a humanized anti-CTGF monoclonal antibody, could decrease albuminuria of diabetic patients with102
incipient nephropathy effectively [34]. These studies demonstrate that strategies specifically targeting CTGF103
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to retard the development of renal disease are likely to be an excellent therapeutic strategy for DN, although104
prospective studies are lacking.105

6 d) Nuclear Factor Kappa b106

Nuclear factor Kappa B (NF-?B), a transcription factor, plays an important role in cell survival and its inhibition107
leads to apoptosis. In the latent state, NF-?B is sequestered in the cytosol by its inhibitor I?B [35]. Upon108
stimulations, its inhibitor I?B will be phosphorylated and degraded rapidly. Proteasomal degradation of I?B109
ultimately frees NF-?B which then translocates into nuclear and activates targeted gene [35]. Numerous studies110
indicated that NF-?B is important modulator of diabetic complications, especially in DN [36,37]. It is reported111
that NF-?B could be activated by a range of stimuli including high glucose, AGEs and ROS [38]. And activated112
NF-?B in turn regulates numerous genes including cytokines, adhesion molecules, NO synthase, angiotensinogen113
and other inflammatory factor implicated in the process of DN [39]. In addition, recent studies have indicated114
that NF-?B plays a key role in podocyte apoptosis [40], modulates the TGF-? intracellular signaling pathways115
[41], which provide further evidence for the role of NF-?B in the pathogenesis of DN. In a study conducted by116
Chiu et al. (2009), the typical characteristics of DN including mesangial expansion, accumulation of extracellular117
matrix were observed in rats injected with streptozotocin [42]. After treating these diabetic rats with curcumin,118
an inhibitor of NF-?B, these diabetes-associated abnormalities were ameliorated. Similar beneficial effects were119
observed by using Polydatin and Lycopene, the putative inhibitors of NF-?B signal pathway, to treat DN rats120
induced by streptozotocin [43,44]. However, approaches to inhibit NF-?B have not been explored fully in clinical121
studies, most likely due to the intimate122

7 e) Osteopontin123

Osteopontin (OPN), also known as secreted phosphoprotein 1, is a complex secreted glycoprotein that facilitates124
cell adhesion and migration by binding integrins with its RGD domain [45]. OPN has also been shown to play125
a prominent role in inflammation via promoting macrophage retention and activating macrophage [46]. Its role126
in DN has recently been examined in OPN gene knockout mice [47]. It was found that diabetic OPN null127
mice have decreased albuminuria, glomerular extracellular matrix, mesangial area and TGF-? compared with128
their respective diabetic OPN+/+ littermates [47], which indicates that OPN promotes diabetic renal injury129
in diabetic OPN+/+ mice. Besides, the upregulated expression of OPN in human and mice with diabetes has130
been observed [48,49]. And OPN, induced by hyperglycemia and lipopolysaccharides [49], is expressed in all131
glomerular cells including mesangial cells, podocytes, and endothelial cells [50,51]. These results suggest that132
OPN contributes to DN via damage the glomerular cells. Lorenzen et al. (2008) carried out an experiment to133
investigate the molecular mechanism of OPN on cultured podocytes [49]. They found that OPN could activate134
NF-?B pathway, increase the expression of urokinase plasminogen activator and matrix metalloprotease, and135
finally lead to increased podocyte motility. The similar study was conducted by Nicholas et al. (2010) in which136
the effect of OPN on cultured mouse mesangial cells was studied [47]. The result shows that OPN could promote137
the accumulation of glomerular extracellular matrix through upregulating TGF-?, ERK/MAPK and JNK/MAPK138
signaling. They also found that the expression of TGF-? induced by glucose was inhibited by OPN antibodies.139
Thus, OPN seems to be a critical contributor to the pathogenesis of DN. However, further studies will be needed140
to validate whether OPN is truly a causative factor for DN or not.141

8 f) Reactive Oxygen Species142

High reactive oxygen species (ROS), induced by hyperglycemia, plays a prominent role in the pathogenesis of143
diabetic complications, especially DN [52,53]. It is reported that ROS could be produced by various types of144
cells which include endothelial cells, mesangial cells, podocytes, tubular epithelial cells under hyperglycemic145
[1,54]. Produced ROS are capable of disturb physiological function of these cells both directly, by oxidizing146
and damaging cellular macromolecules such as DNA, protein lipid and carbohydrate, and indirectly through the147
stimulation of multiple pathways, such as PKC, polyol pathways, NF-?B, RAAS, and accumulation of AGEs148
[52,55]. Zhang et al. (2012) investigated the role of NADPH oxidase-derived ROS in cultured mesangial cell149
and found that high glucose could upregulate NADPH oxidase through JNK/NF-?B pathway and consequently150
produce ROS which finally contributes to glomerular mesangial cell proliferation and fibronectin expression151
[52]. They also use resveratrol, a polyphenolic phytoalexin, to treat high glucose induced mesangial cell and152
the results showed that resveratrol could inhibit mesangial cell expansion and fibronectin expression through153
blocking JNK/NF-?B/NADPH oxidase/ROS signaling pathways [52]. In another study, schizandrin, a blocker154
of NADPH oxidizeinduced ROS signaling, was utilized to treat murine mesangial cell cultured in high glucose155
media [56]. The result showed that schizandrin inhibits high glucose induced mesangial cell proliferation and156
ECM overexpression through attenuating ROS level. Furthermore, a large number of experimental studies have157
proved the beneficial effect of antioxidants, such as Vitamins C and E, superoxide dismutase, and catalase, in158
ameliorating DN [57]. However, it is also reported that ROS are involved in the regulation of renal hemodynamic159
and renal ion transport which is the key for maintaining basic function of kidney [58,59]. Therapeutic effect of160
ROS in preventing of DN is still debatable at this time.161
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13 C) ACTIVATED PROTEIN C

9 III.162

10 Endogenous Protective Factors163

The role of endogenous protective factors in the development of DN has been investigated widely. In a clinical164
research conducted by Perkins et al. (2003), 368 type 1 diabetic patien ts with microalbuminuria were followed165
up for 12 years [60]. It was found that, among these diabetic patients, more than 60% of type 1 diabetic166
patients were free from significant diabetic complications which suggest the presence of endogenous protective167
factors. Meanwhile, these results indicate that endogenous protective factors protect the diabetic patients from168
the progression of DN via neutralizing effect of risk factors such as PKC, ROS, TGF -? etc.169

11 a) Netrin-1170

The netrin-1, a diffusible laminin-related secreted protein, is originally identified as a neuronal guidance cue171
which directs neurons and their axons to targets during the development of the nervous system [61]. Recent172
investigations indicate that netrin-1 is highly expressed in many tissues outside the nervous system, especially in173
vascular endothelial cells of kidney to attenuate inflammation [62]. An investigation conducted by Wang et al.174
??2008) showed that downregulation of netrin-1 correspond with the increased expression of MCP-1 and IL-6175
and infiltration of leukocytes into the kidney [63]. Mice with partial netrin-1 deficiency experience more severe176
degree of ischemic kidney injury because of exacerbated inflammation [64]. Meanwhile, it is also reported that177
administration of recombinant netrin-1 in kidney could suppress inflammation and apoptosis in vivo [65].178

DN is a manifestation of an ongoing chronic low-grade inflammation [66]. The role of netrin-1 in DN has been179
investigated recently and the result showed that over-expression of netrin-1 could protect transgenic mice during180
DN via attenuating inflammation [67]. In a study conducted by Tak et al. (2013), partial netrin-1 deficiency181
mice mode (Ntrn 1+/-) was introduced to investigate the role of netrin-1 protein in STZ induced diabetic mice182
[68]. The result showed that Ntrn 1+/mice revealed a more severe degree of DN compared with wild-type mice183
[68]. In addition, they found that treatment of DN with netrin-1 was associated with attenuated albuminuria184
and improved histological scores for DN. However, as most of these studies were done in animal model, further185
studies in clinic would be important to investigate its therapeutic function.186

12 b) Adiponectin187

Adiponectin, known as ACRP30 and GBP28, is an adipokine produced by white adipocytes and encoded by188
the APM1 gene in humans and rodents [69]. It has two receptors, AD1POR1 and ADIPOR2 which have189
been found to be widely expressed in liver, kidney, and endothelial cells [70]. Through interacting with its190
receptors AD1POR1 and ADIPOR2, adiponectin could mediate increased 5’adenosine monophosphateactivated191
protein kinase (AMPK) and activate peroxisome proliferator-activated receptor alpha (PPAR?), respectively192
[70]. Recently investigation indicated that adiponectin have insulin-sensitizing effects which include stimulation193
of fatty acid oxidation and glucose uptake in skeletal muscle and suppression of glucose production in the liver194
via activating of AMPK in the peripheral tissue [71,72]. They found that administration of adiponectin could195
lower circulating glucose levels without stimulating insulin secretion in both healthy and diabetic mice [72].196

Besides, it is reported that adiponectin has a renoprotective effect in chronic renal disease including DN [73,74].197
In an experiment conducted by Ohahsi et al. ??2007), the result showed that urine albumin excretion, glomerular198
hypertrophy and tubulointerstitial fibrosis were significantly worse in adiponectin knockout mice compared to wild199
type after performing subtotal (5/6) nephrectomy [74]. Further study demonstrated that adiponectin knockout200
mice developed podocyte foot process effacement which is a key process involved in the initial development of201
albuminuria [75]. Sharma et al. (2008) also reported that administration of adiponectin to knockout mice could202
help normalize albuminuria and restore podocytes foot process effacement via activating of AMPK in podocytes203
[75].204

These finding strongly supports the importance of adiponectin as a renoprotective factor. However, it is still205
unclear whether adiponectin will provide significant effects toward human DN.206

13 c) Activated Protein c207

Protein C, known as an anticoagulant factor, is activated by binding of thrombin to its receptor, thrombomodulin.208
After activation, it is reported that protein C confers cytoprotective effect in various disease models, including209
DN [76,78]. In diabetic patients and diabetic mice model, the function of endothelial thrombomodulin protein210
C system, which is in charge of activating protein C, is impaired and the level of activated protein C is reduced211
correspondingly [76,77]. The study conducted by Isermann et al., (2007) also reported that the reduction of212
activated protein C in diabetic mice is responsible for the initiation of DN and maintaining high activated protein213
C level could protect glomerular filtration barrier by preventing glucoseinduced apoptosis in endothelial cells and214
podocytes [76]. Besides, it is also reported that activated protein C have anti-inflammatory and fibrinolytic effects215
[79,80]. In unilaterally nephrectomized C57/B16 diabetic mice model, the urine total protein to creatinine ratio,216
proteinurine and renal fibrosis were ameliorated by administration of exogenous activated protein C [80]. They217
also indicated that the concentration of causative factors such as monocyte chemoattractant protein-1 (MCP-1),218
TGF-?1 and CTGF were decreased significantly in APC-treated mice compared with untreated mice [80]. Thus,219
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APC appears to be a protective factor with anti-apoptosis, anti-inflammatory and fibrinolytic effects for DN and220
clinical studies are needed to validate its therapeutic role.221

14 d) Insulin222

Insulin is an important vasotropic factor which regulates the function of vascular cells, such as endothelial cells,223
macrophages, and podocytes, via binding to its receptors on these cells [10]. After binding to its receptors,224
insulin can activate the pathway of insulin receptor substrate (IRS)/PI3K/Akt/endothelial NO synthase (eNOS)225
and stimulate the production of NO which results in vasodilatation and anti-thrombosis in the short term, and226
can inhibit smooth muscle cell growth and migration chronically [81,82]. It is also reported that insulin could227
increases the expression of VEGF in several cell types, which in turn act as survival factor of podocytes, endothelial228
cells, and mesangial cells [83]. Furthermore, the studies indicated that insulin could prevent apoptosis through229
inhibition of transcription factor FoxO [84] developed albuminuria, effacement of podocytes foot processes,230
increased deposition of components of the basal membrane, and a higher frequency of programmed podocytes231
apoptosis compared to control animals ??88]. The pathology was quite similar to that seen in DN. Thus, this232
finding strongly supports the importance of insulin signaling as a renoprotective factor and improving insulin233
sensitivity in glomerular tissue may decrease the risk for DN.234

15 IV. Conclusions235

Figure 1: Figure1:
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