

Dilemma of Inferior Turbinate Surgery

Khaled Mohamed Bofares¹

¹ Omar Almoukhtar University

Received: 14 April 2015 Accepted: 1 May 2015 Published: 15 May 2015

5

Abstract

Back ground and objectives: Inferior turbinate surgery is considered as one of common surgical procedures which performed in rhinology. It is usually done for the purpose of reduction of the bulk of inferior turbinates. It can be conducted for different indication as to relieve the mechanical nasal obstruction due to hypertrophied inferior turbinates, or to achieve a sufficient nasal surgical access during endoscopic sinus surgery, or to remove the inferior turbinates as a part of wide and complete resection of rhino-sinus neoplastic lesions. The inferior turbinates have important role in the maintenance of nasal breathing function via providing the nasal valve mechanism that is necessary for regulation of air flow through the nose. Therefore in spite of availability of well-established variable techniques for this surgery but the main goal of this surgery still yet not completely achieved by preserving the balance in between the mechanical as well as the functional patency of the nose. This can be explained by the effect of different factors which usually difficult to be predicted and controlled.

19

20 **Index terms**— inferior turbinate surgery, inferior turbinectomy, sub-mucosal diathermy, turbinoplasty.

1 Dilemma of Inferior Turbinate Surgery

22 Abstract-Back ground and objectives: Inferior turbinate surgery is considered as one of common surgical procedures which performed in rhinology. It is usually done for the purpose of reduction of the bulk of inferior turbinates. It can be conducted for different indication as to relieve the mechanical nasal obstruction due to hypertrophied inferior turbinates, or to achieve a sufficient nasal surgical access during endoscopic sinus surgery, or to remove the inferior turbinates as a part of wide and complete resection of rhino-sinus neoplastic lesions.

27 The inferior turbinates have important role in the maintenance of nasal breathing function via providing the nasal valve mechanism that is necessary for regulation of air flow through the nose. Therefore in spite of availability of well-established variable techniques for this surgery but the main goal of this surgery still yet not completely achieved by preserving the balance in between the mechanical as well as the functional patency of the nose. This can be explained by the effect of different factors which usually difficult to be predicted and controlled.

32 Thus this pattern of surgery became one of big dilemmas in rhinology which need to be deeply evaluated and subsequently resolved. For this reason, this serial study was conducted prospectively as analytic trial to assess the different aspects of this dilemma and to give finally further suggested recommendation as possible solutions for the clarification of this issue.

36 Patients and methods: 1337 patients aged 3-65 years of hypertrophied inferior turbinates , presented with 37 clinical pictures of mechanical nasal obstruction related presentations at ENT department -Althowra central 38 hospital and Al-tarahom private center Elbyda city-Libya at period in between September 2005 to September 39 2014 who operated by variable techniques of inferior turbinate surgery, namely sub-mucosal diathermy (SMD) 40 (n=864), partial inferior turbinectomy (PIT) (n=427), CO2 laser vaporization of inferior turbinate (n=21), and 41 turbinoplasty (n=25) . The outcomes namely postoperative atrophic rhinitis, and persistence or recurrence of 42 the mechanical nasal obstruction was studied in relation to different factors to postulate as much as possible the 43 clear answers for many complex questions which form this dilemma.

44 2 Results and Conclusion:

45 The proper selection of patient for this pattern of surgery is considered as one of main aspects of this issue and one
46 of significant steps toward the resolving of this dilemma it is very necessary to select the most suitable candidate
47 for this surgery. On the other hand, the type of the technique for this surgery is needed to be selected probably; it
48 was found that there are many factors, according to which the most proper technique will be selected. In addition
49 the amount of the inferior turbinate which needed to be resected must be decided probably too. In accordance,
50 it is necessary to confirm whether the accompanied septoplasty required to be performed in association with
51 the inferior turbinate surgery, it was found that the septoplasty for even mild DNS (grade-I) may significantly
52 reduce the risk of postoperative atrophic rhinitis as well as persistent functional nasal obstruction by minimizing
53 as much as possible the resection action for inferior turbinates.

54 3 Introduction

55 The inferior turbinate surgery constitutes one of common patterns of surgical procedures which widely per-
56 formed in rhinology. It represents that kind of surgery which aimed basically for reduction of inferior
57 turbinate bulk. Hence this type of surgery is considered as very effective modality of surgery in reliev-
58 ing the mechanical nasal obstruction due to hypertrophied inferior turbinate therefore there were a lot of
59 trials during last and presenting centuries to create new and more advanced manners of this important
60 procedure. In deed all these trials were targeted for the purpose of the improvement of outcomes of this
61 surgery. The cornerstone for improvement of outcomes of this surgery will be via the maintenance of op-
62 timum size for the inferior turbinates (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)
63 . Anatomically as well as functionally speaking, the inferior turbinates are considered as very sig-
64 nificant anatomical structures that acting through their size and position to preserve the one of pri-
65 mary and vital functions of the nose which is the sufficient nasal breathing this will be achieved by
66 the committing the normal nasal valve mechanism at the most anterior part of nasal cavity that facili-
67 tate the eddy current flow of the air (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)
68 . Therefore the difficulties for preservation of unique size of inferior turbinates can be recognized
69 as a main reason on top of which the dilemma of this variety of surgery in rhinology was appeared
70 (10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27) .

71 Although the enough bulk of inferior turbinate is necessary for maintenance of normal nasal breathing function
72 and in accordance the hypertrophied inferior turbinate that occupy more than one-third of nasal lumen may be
73 manifested with significant nasal obstruction related symptomatology thus the main goal of the inferior turbinate
74 surgery is keeping the balance in between the over-resection and under-resection of inferior turbinate at optimum
75 level that provide the preservation of sufficient breathing function through the nose and in the same time relieving
76 the mechanical obstruction due to inferior turbinate hypertrophy ??1-20 and 33-35) .

77 There are variable etiologies for inferior turbinate hypertrophy which could be allergic rhinitis, rhinitis medica-
78 mentosa, vasomotor rhinitis, chronic hypertrophic rhinitis, and chronic infective rhinitis as fungal rhinitis. As
79 it is well established that all previously mentioned causes can be treated and controlled sufficiently by medical
80 treatment before the decision of any surgical interventions. Hence the bulk as well as the contour of inferior
81 turbinates is required for maintenance of normal nasal breathing function thus the medical therapy for inferior
82 turbinate hypertrophy still is considered as the mainstay of treatment before the surgery .

83 On the other hand, broadly speaking the indications for inferior turbinate surgery can be classified as: a)
84 for relieving of mechanical nasal obstruction due to confirmed persistent inferior turbinates hypertrophy, b) for
85 providing a sufficient surgical access during certain internal nasal surgical procedures as functional endonasal
86 endoscopic or microscopic sinus surgery, and c) as a part of wide resection for eradication of lateral nasal wall
87 neoplastic lesions .

88 In fact, during the last century as well as the presenting century as one of developing aspects in the rhinology
89 is the inferior turbinate surgery and in accordance there are many modalities of this surgery were performed
90 namely; submucosal diathermy, partial inferior turbinectomy, CO₂ laser vaporization, Argon laser vaporization,
91 turbinoplasty, and lateral nasal wall lateralization. Each of these patterns has advantages and disadvantages
92 which need to be correlated with each patient who had been decided as a candidate for inferior turbinate surgery
93 to improve as much as possible the postoperative outcomes of this surgery. For some extent there will be certain
94 difficulties which may interfere with the proper selection of most suitable modality for each particular patient
95 and subsequently the achieved sequels of this surgery will not be as wished therefore this type of surgery was
96 described as one of big dilemmas in rhinology .

97 Thus this serial study was aimed as prospective analytic study to resolve as much as possible this dilemma. We
98 tried in this presenting study to put a frame-work for the solution of this dilemma via the finding of answers for
99 these difficult questions: Q1-who is the patient that can be considered as most suitable patient for this surgery?
100 Q2-which modality of this surgery will be selected as most unique technique for this particular patient? Q3-how
101 much the bulk of inferior turbinate is recommended to be removed for the purpose of maintenance of sufficient
102 size and contour of it? Q4-and as a trial to maintain the proper size and contour of inferior turbinate, is it
103 advisable to perform concomitant septoplasty with inferior turbinate surgery or not? II.

104 Patients and Methods 1337 patients aged 3-65 years of persistent inferior turbinates hypertrophy due
105 to different causes namely allergic rhinitis, rhinitis medica-mentosa, and vasomotor rhinitis, presented with

106 mechanical nasal obstruction that not responding to enough medical treatment at ENT department -Althowra
107 central hospital and Altarahom private center -Elbyda city -Libya at period in between September 2005 to
108 September 2014 who operated by different techniques of inferior turbinate surgery, namely sub-mucosal diathermy
109 (SMD) (n=864), partial inferior turbinectomy (PIT) (n=427), CO2 laser vaporization of inferior turbinate
110 (n=21), and turbinoplasty (n=25). The mechanical nasal obstruction was confirmed clinically by the gross
111 appearance of inferior turbinates at pre-operative anterior rhinoscopic as well as endoscopic evaluation as enlarged
112 turbinates that occupied more than one-third of nasal lumen, with non-shiny, thick and pale mucosa, in addition
113 to postulation of positive Cottle's sign. According to intraoperative performed technique, SMD group was
114 divided in relation to conducted cauterization points into three sub-groups (two points sub-group, three points
115 subgroup, and four points sub-group), also PIT group was classified according to the amount of resected tissue
116 into three sub-groups too (sub-group-A that include those patients who underwent for the resection of one-third
117 of hypertrophied inferior turbinate, sub-group-B that include those patients who underwent for the resection of
118 two-thirds of hypertrophied inferior turbinate, and sub-group-C that include those patients who underwent for the
119 subtotal resection of hypertrophied inferior turbinate), in addition CO2 laser vaporization group was categorized
120 in relation to the used laser power into four sub-groups (sub-group1, sub-group2, sub-group3, and sub-group4)
121 which include those patients who underwent CO2 laser vaporization with different powers in Watts (2, 3, 4, and
122 5 Watts consecutively). On the other hand, the part of patients who interfered with SMD and PIT were operated
123 concomitantly with septoplasty (n= 355, n= 235 consecutively), and compared to those who operated by solitary
124 SMD and PIT (n= 509, n= 192 consecutively) to assess the effect of concomitant septoplasty on outcomes of
125 inferior turbinate surgery. The outcomes of the surgery were studied and compared between the groups and
126 sub-groups in relation to different patients' demographic, environmental, habitual, socio-economic, pathological
127 as well as technical factors. The patients postoperatively were evaluated throughout first week for any nasal
128 bleeding and followed up for 3-36 months to be assessed for common late complications of the surgery which are
129 mainly the persistence or recurrence of mechanical nasal obstruction, and post-operative atrophic rhinitis. The
130 nasal obstruction was assessed post-operatively by elucidation of any olfactory In accordance and from economic
131 point of view the expense of each technique was assessed in relation to drugs consumption (this was including
132 anesthesia drugs, systemic antibiotics, analgesic drugs, intravenous fluids, post-operative local irrigation solutions,
133 and sometimes anticoagulant drugs as tranxiemic acid which may be required to be administered for patients
134 with uncontrolled postoperative epistaxis), any expense related to specific machine which is used in the inferior
135 turbinate surgery technique as CO2 laser machine, used local nasal packs, expense related to patient's word
136 admission, and finally expense related to patient post-operative followup. The total price for each technique was
137 roughly calculated in Libyan dinars and equaled to American dollars.

138 An informed consent was taken from the patients involved in the research prior to their participation.

139 Data were expressed by using descriptive analysis as means + standard error of mean (s. e. m) and percentages,
140 test of significance was carried out, using Chi-square test and two way analysis of variance. A probability less
141 than 0.05 was considered as significant, the degree of significance was determined by using level of standard
142 deviation test. Student -t-test was used for dependent sample, as well as contingency coefficient was calculated
143 as measurement of association between nominal variables.

144 4 III.

145 5 Results

146 As shown in (Figure ??I & II) the incidence of post-operative nasal bleeding and atrophic rhinitis was correlated to
147 two significant factors which are the age of patient and the type of performed technique, it was found that the PIT
148 increased significantly the risk of postoperative bleeding and atrophic rhinitis up to (20%) and (35%) consecutively
149 among elderly patients as compared to SMD and CO2 laser vaporization ($P < 0.05$). On the other hand, as
150 illustrated in (Figure ??III) the incidence of post-operative recurrence of hypertrophied inferior turbinates was
151 correlated to the patient related environmental as well as habitual factors, it was found that SMD and CO2 laser
152 vaporization are associated with higher percentage of recurrence (30% and 80%) consecutively as compared to
153 PIT among heavy smoking patients as well as those patients with history of frequent exposure to allergic rhinitis
154 inducing allergens ($P < 0.05$). In accordance the (Table-I) postulated the effect of patients' local health status
155 on outcomes of the inferior turbinate surgery, it was found that the patients with allergic rhinitis and vasomotor
156 rhinitis who interfered by PIT as well as turbinoplasty showed a significant longstanding improvement may reach
157 up to 93% as compared to those who interfered by SMD and CO2 laser vaporization ($P < 0.05$). As demonstrated
158 in (Table -II) the effect of patients' general health status in relation to the type of performed technique outcomes,
159 it was confirmed that the patients with uncontrolled systemic hypertension had a significant raising in the risk
160 of post-operative epistaxis after PIT as compared to other techniques and also those patients with uncontrolled
161 diabetes mellitus shown higher risk of recurrence of nasal obstruction after SMD as well as CO2 laser vaporization
162 as compared to other techniques ($P < 0.05$). on the other hand, (Figure ??IV) was elucidated the comparison
163 between different techniques in relation to intraoperative time consumption, it was found that the duration of
164 turbinoplasty was significantly longer as compared to PIT, CO2 laser vaporization, and SMD technique which
165 was associated with the minimal duration ($P < 0.05$). Therefore from economic point of view, as illustrated at
166 (Table-III) the CO2 laser vaporization can be considered significantly with higher expense as compared to other

7 DISCUSSION

167 techniques ($P < 0.05$). From the other aspect, technically speaking as can be noted from (Table -IV) the amount
168 of direct or indirect reduction of inferior turbinate bulk had a significant effect on outcomes of the performed
169 procedure, and as it is presented at the same table these results was correlated with number of cauterization
170 points in SMD, the used power in CO2 laser vaporization, as well as the resected size of inferior turbinate among
171 PIT, it was found that the three subgroups of SMD technique according to number of cauterization points (two
172 points\three points\four points) did not show any significant difference in relation to post-operative outcomes
173 namely local atrophic changes and persistent or recurrence of nasal obstruction ($P > 0.5$). In accordance the
174 risk of postoperative atrophic rhinitis as well as persistence or recurrent nasal obstruction increased significantly
175 among third sub-group of PIT as compared to other two sub-groups ($P < 0.05$). In addition it was observed that
176 there is no direct proportional relation-ship between the used power of CO2 laser and postoperative outcomes
177 ($P > 0.5$). On the other hand, as shown in (Table-V) there was significant improvement for outcomes of SMD
178 as well as PIT if they are performed concomitantly with septoplasty procedure ($P < 0.05$).

179 6 Volume

180 7 Discussion

181 The inferior turbinate surgery is considered as one of big issues in rhinology. Hence this pattern of surgery is
182 frequently indicated and widely performed therefore it always needs to improve its outcomes. Although during
183 last two centuries there are many conducted clinical studies which tried to present new techniques that may had
184 been proved with better outcomes of this surgery but still as shown at other many clinical trials and observations
185 that it may become very difficult to decide which technique is most suitable variety for certain particular patient.
186 In accordance, it was found that there are many factors which may be responsible for creation of difficulties
187 regarding the selection of most proper manner of inferior turbinate surgery . However most of the recent studies
188 tried to resolve these difficult situations but from the clinical aspect it was noted that in spite of following of
189 these studies recommendations, unpredicted post-operative outcomes still appearing. Thus this type of surgery
190 can be classified as one of the dilemmas at rhinology and according to our experience the main points that in
191 favor of this dilemma innovation are: a. Who is the patient that can be considered as most suitable candidate
192 for inferior turbinate surgery? b. Which is the technique that can be selected as most proper technique for
193 certain particular patient? c. How much uniquely is required to remove from the bulk of hypertrophied inferior
194 turbinate? d. Is the solitary inferior turbinate surgery sufficient to relief the mechanical nasal obstruction or
195 it needs to be performed with the septoplasty as concomitant procedure to improve outcomes of the surgery as
196 much as possible?

197 In this serial study we tried to find out optimum answers for all these questions. In the same manner as it is
198 noted from this presenting study the number of cases and the time of follow up of patients can be considered as
199 very sufficient as well as very conclusive for any final recommendation which were given via this study.

200 Regarding the selection of the patient who should be considered as most suitable candidate for inferior turbinate
201 surgery, generally speaking the inferior turbinate surgery can be elective and non-elective i.e. when this pattern
202 of surgery is decided to be performed for the management of persistent mechanical nasal obstruction at this case
203 it will be classified as elective surgery (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20) .
204 On the other hand, the inferior turbinectomy can be conducted non-electively as a part of wide resection
205 of sino-nasal neoplastic lesions (36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46)(47)(48)(49)(50) . Our discussion
206 is mainly highlight the elective category of this surgery. Basically there are five major criteria according to
207 which the patient might be indicated for inferior turbinate surgery: Hence the patient was selected as indicated
208 candidate for inferior turbinate surgery; the next step will be the selection of most suitable technique for that
209 particular patient. Generally speaking there are five patterns of inferior turbinate surgical techniques namely;
210 a) partial turbinectomy which can be done by lateral resection of maximum up to one-third of hypertrophied
211 inferior turbinate either by using curved scissors, or shaver, or radio-frequency ablation, or co-ablation ??1-
212 20 and 37-71) . b) submucosal diathermy, this technique is considered as old fashion for inferior turbinate
213 surgery. It is performed by creation of electrical cauterization at multiple points (2-5 points) through sub-
214 mucosal layer of hypertrophied inferior turbinate. This technique acts mainly by cauterization of sub-mucosal
215 venous sinusoids among hypertrophied inferior turbinate with active sensitization inflammatory process due to
216 allergic rhinitis, vasomotor rhinitis, or rhinitis medica-mentosa. Thus the sub-mucosal fibrosis will be induced
217 subsequently as a reaction to venous sinusoids cauterization and this will result in the shrinkage of inferior
218 turbinate bulk. However the submucosal diathermy technique was proved to be very effective and simple technique
219 but still it is of no benefits among those patients with hypertrophied inferior turbinate due to increase in bulk
220 of concha bone rather than soft tissue (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)
221 . c) CO2 laser vaporization of hypertrophied inferior turbinate, this technique was confirmed to be very
222 effective with minimal post-operative local atrophic changes as compared to other previously mentioned two
223 techniques. It acts by same mechanism of submucosal diathermy through its penetration effect into sub-
224 mucosal layer of hypertrophied inferior turbinate and as compared to submucosal diathermy technique it has
225 less destructive effect on the mucosal glandular acini as well as venous sinusoids therefore the incidence of post-
226 operative atrophic rhinitis after CO2 laser vaporization is limited but in the same time its action to relief the
227 mechanical nasal obstruction due to hypertrophied inferior turbinate will be lesser as compared to other techniques

228 (20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35) . d) turbinoplasty, simply this technique can
229 be described as that inferior turbinate surgical modality which is conducted via the reduction of bone bulk of
230 inferior concha. In accordance this technique is aimed to maintain the mucosal cover of inferior turbinate therefore
231 the eddy current mechanism of air flow by inferior turbinate mucosal lining will be preserved in addition to the
232 maintenance of moisture consistency of inspired air by mucosal glandular acinic secretions thus the turbinoplasty
233 is the technique which associated with minimal post-operative nasal atrophic changes.

234 Although the turbinoplasty is the recommended technique for hypertrophied inferior turbinate due thickened
235 concha bone but for some extent it can be performed even for reduction of inferior turbinate soft tissue . e)
236 lateral nasal wall lateralization, which was first described by Daniel simmen on 2013 and this technique is simply
237 performed by submucosal resection of lateral nasal wall bone just in front to lacrimal sac and this can give
238 sufficient access for more lateralization of ipsilateral inferior turbinate (72) .

239 In fact we observed throughout our long practical experience that the following of the recommendations which
240 frequently come out from several old as well as recent studies regarding inferior turbinate surgeries did not
241 sufficiently give the predicted results as those studies concluded. For this reason we tried through this planned
242 serial study to suggest certain possible factors that may had been thought to be effective factors on the outcomes
243 of this pattern of surgery and the further conclusions from this study can be roughly considered as a first step
244 toward the resolving of this big dilemma in rhinology. Accordingly in this serial study these suggested factors
245 were mainly correlated to the answer of the second question of this dilemma (Which is the technique that can be
246 selected as most proper technique for certain particular patient?). Moreover these studied factors can be discussed
247 as: a) Patient's age, generally speaking, the elderly patients showed higher incidence of post-operative epistaxis
248 as well as the atrophic rhinitis among four performed procedures namely PIT, SMD, CO2 laser vaporization,
249 and turbinoplasty as compared to the young ages. On the other hand, specifically speaking, the incidence of
250 post-operative epistaxis as well as atrophic rhinitis significantly increased by interfering with PIT as compared
251 to other inferior turbinate surgical techniques i.e. the risk of post-operative epistaxis and atrophic rhinitis is
252 direct proportionally to increasing of patient's age. This can be explained by a scientific and basicphysiological
253 fact that vascular related aging process among elderly patients contributes the main predisposing factor for the
254 impairment of local homeostasis control after the surgery as well as the delay of proper healing process at the site
255 of surgery, in addition to the significant decrease in the number of venous sinusoids and mucosal glandular acini at
256 submucosal layer of the turbinate among elderly patient due to local physiological aging changes too ??1-20 and
257 37-71) . Thus PIT might not be considered as most suitable technique for inferior turbinate surgery among old
258 ages because technically speaking PIT can be described as highly invasive procedure that associated with cutting
259 action and wide resection of the turbinate's soft tissue that may increase significantly the risk of intra-operative
260 as well as post-operative bleeding in addition to the increasing of risk of post-operative local atrophic changes
261 particularly among elderly patients (15)(16)(17)(18)(19)(20) . b) Patient related habitual and environmental
262 factors, the results of this study postulated that the incidence of post-operative recurrence of inferior turbinate
263 hypertrophy increased significantly by smoking and chronic exposure to certain allergens as pollens, animal
264 epithelials, house dust mites, and chemical irritants as compared to the non-smokers as well as those patients
265 who are not frequently exposed to environmental irritants. In accordance the incidence of recurrence of inferior
266 turbinate hypertrophy by smoking and persistent allergens exposure was significantly higher after CO2 laser
267 vaporization as compared to other techniques this can be explained by the insufficient reduction of submucosal
268 venous sinusoids as the histological changes on the inferior turbinate mucosa after CO2 laser vaporization this
269 will increase the incidence of the inferior turbinate re-congestion and subsequent hypertrophy as the result of
270 IgE -hypersensitivity reaction activation due to the persistent smoking and exposure to the allergens. On the
271 other hand, the SMD, PIT, and turbinoplasty are associated with significant lowering of the incidence of inferior
272 turbinate hypertrophy after the surgery this is because of obvious reduction of the number of sub-mucosal
273 venous sinusoids due to sub-mucosal cauterization by SMD and enough tissue bulk resection by PIT as well as
274 turbinoplasty techniques. Therefore CO2 laser vaporization might not be selected as most suitable technique
275 for inferior turbinate surgery among smokers and those patients who live or work at contaminated environment
276 ??18-20 and 23-27) . c) Patient's local health status, this serial study confirmed that the local nasal pathological
277 status of the patient may affect significantly the decision regarding the selection of most proper technique of
278 inferior turbinate surgery i.e. those patients who presented as cases of allergic rhinitis and vasomotor rhinitis got
279 significant long standing improvement regarding the patency of nose after PIT and turbinoplasty as compared
280 to SMD and CO2 laser vaporization. This can be discussed in relation to the sufficient amount of tissue which
281 resected either by PIT or turbinoplasty. On the other hand, the basic idea behind the performance of SMD as
282 well as CO2 laser vaporization is the reduction of number of venous sinusoids and enhancement of diffuse fibrosis
283 at the level of sub-mucosal layer of inferior turbinate either by cauterization effect of SMD or penetration effect
284 of CO2 laser vaporization; these effects had been proved to be not sufficient to fulfill the adequate maintenance of
285 optimum size of inferior turbinate because still there is risk of proliferation of the venous sinusoids and subsequent
286 recurrence of congestion as well as hypertrophy of inferior turbinate due to the allergic or autonomic nervous
287 system disturbance phenomena predisposition. Thus the most suitable techniques for inferior turbinate surgery
288 among patients with allergic rhinitis or vasomotor rhinitis are PIT or turbinoplasty . d) Patient's systemic health
289 status, this presenting study demonstrated that the risk of epistaxis is increased after PIT among hypertensive
290 patients as well as diabetic patients; this can be explained by extensive local tissue injury due to PIT as compared

291 to other less invasive techniques. Moreover the SMD creates higher risk of recurrence of nasal obstruction among
292 diabetic patients as compared to other techniques; this can be reasoned to that the patients with diabetes
293 mellitus are more prone for local atrophic changes and diffuse fibrosis as compared to non-diabetic patients due
294 to high incidence of local diabetic angiopathic changes this can result in functional nasal obstruction rather than
295 mechanical nasal obstruction, in addition to the higher incidence of vasomotor rhinitis among diabetic patients
296 as compared to non-diabetic patients this will increase the risk of post-operative recurrence of mechanical nasal
297 obstruction due to inferior turbinate hypertrophy. Accordingly we can judge that the PIT is not the advised
298 technique for hypertensive as well as diabetic patients and SMD is not the curable procedure for patient with
299 diabetes mellitus (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) .

300 In accordance there is another important factor which may has significant interaction for rooting of this
301 dilemma namely the socio-economic factor. As it was elucidated at this serial study and via the rough evaluation
302 of different economic aspects for each performed technique including the expense of used drugs, nasal packing,
303 patient word stay, specific machine expense, and post-operative patient follow-up it was found that PIT and
304 turbinoplasty had higher prices as compared to SMD as well as CO2 laser vaporization. Although the machine
305 expense for CO2 laser vaporization is very significantly higher but still the total price is obviously lower as
306 compared to other procedures. This can be discussed in relation to the

307 8 Volume XV Issue 1 Version I

308 Year 2015 () J other aspects rather than the machine expense i.e. PIT and turbinoplasty are considered as
309 more invasive techniques which consume longer intra-operative duration therefore there will be more utilization
310 of intraoperative anesthesia drugs in addition to certain specific drugs which might be needed to be administrated
311 as tranxiemic acid for purpose of epistaxis control which of higher incidence among these two procedures (20-45).
312 On the other hand, patients after PIT as well as turbinoplasty need to be observed and cared more as compared
313 to other techniques this will result in the prolongation of patient's post-operative stay at word. Also the patients
314 after PIT and turbinoplasty need frequent follow-up sessions after their discharge this is because of high tendency
315 for recurrent local dryness and crusts formation during first 4-6 weeks postoperatively which may predispose to
316 infective rhinitis that result in subsequent healing by scaring and synaechia creation, for this reason the repetitive
317 sessions of local irrigation and suction-clearance after PIT as well as turbinoplasty are recommended to reduce
318 all previously mentioned risks. However the PIT and turbinoplasty are considered as very effective technique for
319 the surgical management of persistent mechanical nasal obstruction due to inferior turbinate hypertrophy but at
320 the same time they are considered as expensive procedures as compared to SMD and CO2 laser vaporization .

321 In the same manner, we thought that the used power during CO2 laser vaporization constitutes one of
322 important issues which may play a role in building-up of this big dilemma thus we tried via this clinical study
323 to assess which is the most suitable power for CO2 laser vaporization. As it was illustrated at the results of
324 this serial study the power of 3-4 watts were associated with lower incidence of post-operative atrophic rhinitis
325 as well as persistence or recurrence of nasal obstruction as compared to lower powers which had been proved
326 with significantly high incidence of post-operative persistent or recurrent nasal obstruction and higher powers
327 which showed significant raising in the incidence of both postoperative atrophic rhinitis as well as persistence or
328 recurrence of nasal obstruction.

329 These observations can be explained by inability of low powers to destroy sufficient number of sub-mucosal
330 venous sinusoids that may increase the risk of persistence and recurrence of mechanical nasal obstruction due
331 to the inferior turbinate congestion and hyperemia and on the other hand the high powers are more destructive
332 powers that lead to extensive venous sinusoids and glandular acini loss this will result in higher incidence of
333 local atrophic changes after the surgery which can be considered as main cause for persistence or recurrence of
334 functional nasal obstruction (19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33) .

335 From the other aspect, we tried at our serial clinical trial to evaluate whether the concomitant septoplasty
336 has any role regarding improvement of outcomes of inferior turbinate surgery, in accordance we found that the
337 performance of septoplasty even for mild deviated nasal septum as bothersome procedure with inferior turbinate
338 surgery may improve significantly the outcomes of this surgery and this can be explained simply by the reduction
339 of points of cauterization among SMD cases and limitation of the tissue resection among PIT cases therefore
340 the risk of post-operative atrophic rhinitis and subsequent functional nasal obstruction is significantly decreased
341 in addition that the patient get important relieve regarding the mechanical nasal obstruction because of the
342 interfering with both deviated septum as well as hypertrophied inferior turbinate (53) .

343 Finally we can conclude to that really the inferior turbinate surgery is considered as one of big dilemmas at
344 rhinology and because it is widely conducted surgery thus always it needs frequent research to resolve all possible
345 associated problems and issues. The cornerstone of this dilemma is how to avoid the adverse outcomes of inferior
346 turbinate surgery mainly postoperative epistaxis as early complication and atrophic rhinitis as well persistent
347 or recurrent nasal obstruction as late complications. As it can be noted from the results of this serial study
348 which tried to evaluate different patterns of inferior turbinate surgery and correlated with variable groups of
349 factors the proper selection of most suitable candidate for this surgery is very necessary and we mean by suitable
350 candidate that the patient who is strongly indicated for this surgery, in addition the proper selection of the most
351 suitable technique is another significant key point toward the resolving of this dilemma. In accordance and as
352 suggested recommendation the selection of proper technique needs to be based up on certain patient's related

353 factors namely age, local as well as general health status, surrounding environment, habitus, and socio-economic
354 status.

355 Although this study was well-controlled, longstanding, and of adequate number of cases but it may be
356 considered as non-formative study regarding CO2 laser vaporization, and turbinoplasty because the number
357 of operated cases among these two procedures is not sufficient as compared to other two procedures thus the
358 comparative elucidations of CO2 laser vaporization as well as turbinoplasty with SMD and PIT will be non-
359 conclusive therefore as other suggested recommendation the further clinical studies are advised to be committed
360 to confirm these concepts which obtained from this presenting study and in the same time the new aims may be
suggested to be postulated toward the resolving of this dilemma. ¹

Figure 1:

361

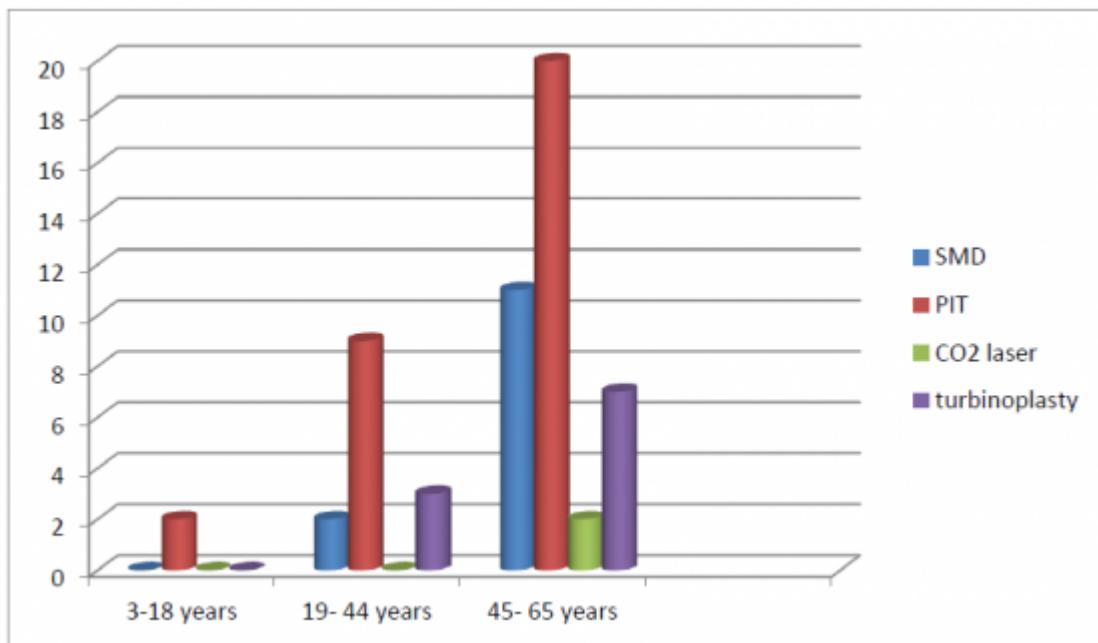


Figure 2: Figure

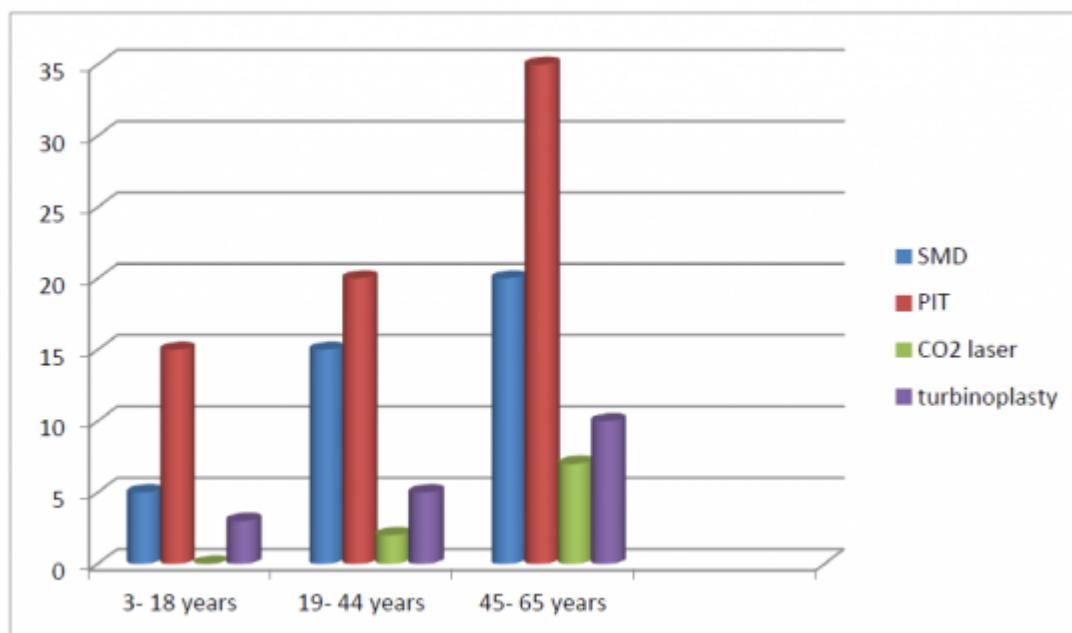


Figure 3:

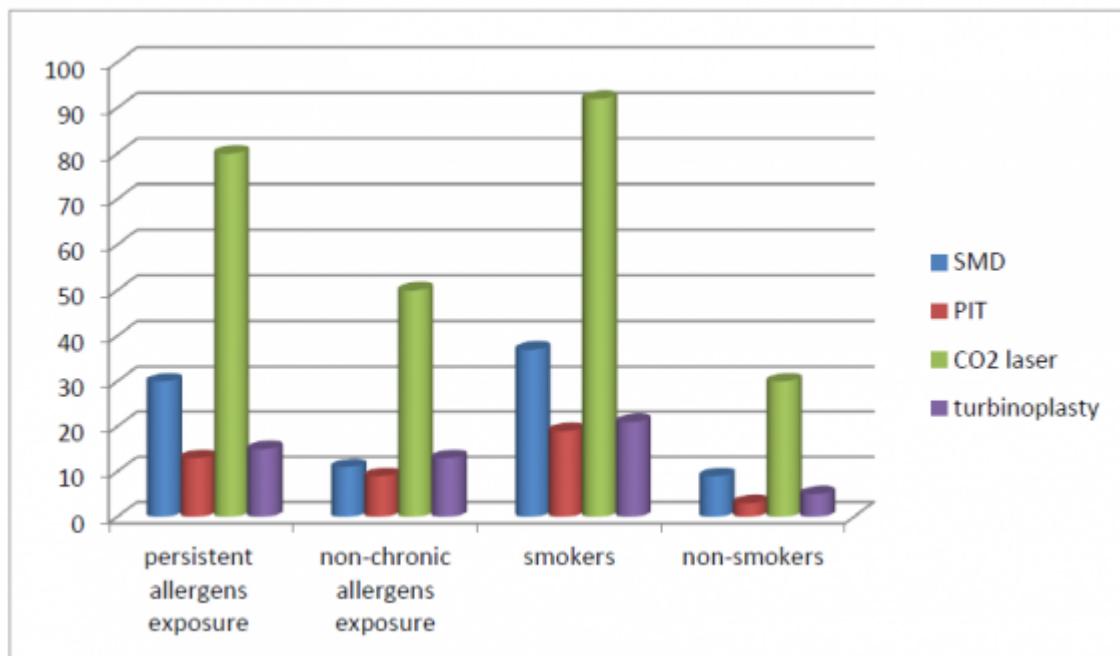


Figure 4:

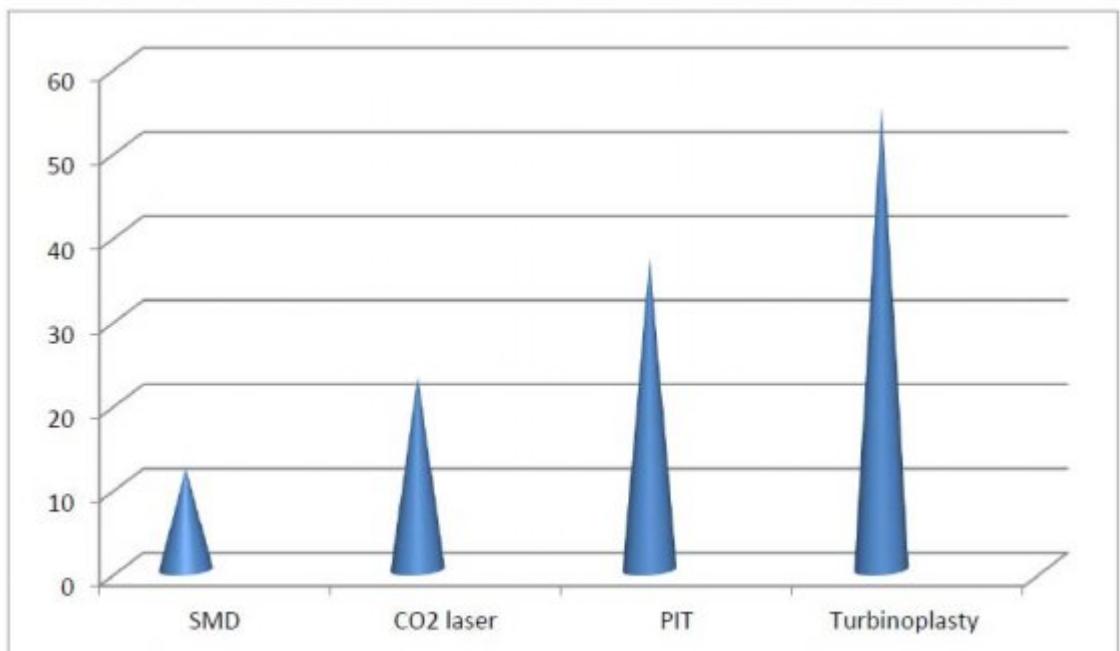


Figure 5:

Type of local pathology	Percentage (%) of persistence of nasal patency improvement for 36 months in relation to type of procedure				
	SMD (N=864) [ARn= 536 & VMRn =264]	PIT (N=427) [ARn= 269 & VMRn =133]	CO2 laser (N=21) [ARn= 13 & VMRn =8]	Turbinoplasty (N=25) [ARn= 20 & VMRn =5]	Total n & %
Allergic rhinitis (AR) (N= 838)	(n=306) 57%	(n= 250) 93%	(n= 8) 63%	(n= 16) 80%	(n= 580) 69%
Vasomotor rhinitis (VMR) (N= 410)	(n=129) 49%	(n= 118) 89%	(n= 3) 37%	(n=4) 83%	(n= 254) 62%
Total N= 1248	(n=435) 54%	(n= 368) 92%	(n=11) 53%	(n=20) 80%	(n= 834) 67%

Figure 6:

Type of general pathology	Percentage (%) of post-operative epistaxis (E) and recurrence of nasal obstruction (RNO) at each procedure in relation to patients' general health status							
	SMD (N=864) [HTNn= 47 & DMn =81]		PIT (N=427) [HTNn= 13& DMn =37]		CO2 laser (N=21) [HTNn= 3 & DMn =2]		Turbinoplasty (N=25) [HTNn= 4 & DMn =2]	
	E	RNO	E	RNO	E	RNO	E	RNO
Systemic hypertension (N= 67)	n= 13 27%	n= 18 39%	n= 12 91%	n= 2 13%	n= 0 0%	n= 1 34%	n= 2 50%	n= 0 0%
Diabetes mellitus (N= 122)	n= 15 19%	n= 70 87%	n= 27 73%	n= 6 17%	n= 0 0%	n= 0 0%	n= 0 0%	n= 0 0%

Figure 7:

The items	The expenses for different inferior turbine surgery techniques in Libyan dinars (mean± standard error of mean (s. e. m))			
	SMD	PIT	CO2 laser	turbinoplasty
Drugs	36±4.7	108±5.3	55±7.9	103±1.9
Nasal packing	15±11.5	33±0.2	0	31±0.5
Patients word stay	126±3.9	299±0.7	44±1.2	209±0.3
Specific machine expense	0	0	139±4.1	0
Post-operative patient follow-up	35±4.3	77±6.3	43±5.7	53±0.7
The total in Libyan dinars	212±5.7	517±7.1	281±4.9	396±0.3
The total in American dollars	106±2.9	258±3.7	140±2.5	198±0.16

Figure 8:

Outcomes of technique	The outcomes of CO2 laser vaporization of hypertrophied inferior turbinate (%) in relation to used power in Watts (N=21)			
	2 Watts (n=5)	3 Watts (n=6)	4 Watts (n=5)	5 Watts (n=5)
Local atrophic changes	40% (n=2)	17% (n=1)	20% (n=1)	60% (n=3)
Persistence or recurrence of mechanical nasal obstruction	60% (n=3)	34% (n=2)	60% (n=3)	80% (n=4)

Figure 9:

Outcomes	Percentage of outcomes with septoplasty N=590		Percentage of outcomes without septoplasty N=701	
	One point SMD n= 355	One-third PIT n= 235	Two point SMD n=509	Two -thirds PIT n=192
Atrophic changes	0	2% n=5	31% n=158	47% n=90
Persistent nasal obstruction	0	0	12% n=61	9% n=17

Figure 10:

II

Year 2015
Volume XV Issue 1 Version I
() J

Figure 11: Table II :

IV

Volume XV Issue 1 Version I

[Note: © 2015 Global Journals Inc. (US) Year 2015 ()]

Figure 12: Table IV :

V

IV.

Figure 13: Table V :

- a) The patient has chronic nasal obstruction related presentations that mainly of five varieties, partial or complete inability to breathe through the nose, frequent or persistent opened mouth for mouth breathing, olfaction function impairment, sleep related breathing disorders, and recurrent sore throat, pharyngitis, as well as oral ulcers due to persistent mouth breathing.
- b) The patient received sufficient medical therapy in form of local steroids, local nasal douching, systemic steroids, and systemic anti-histamines for enough time which is 3-6 months but the

Year patient did not show any significant clinical improvement. c) The patient proved 2015 locally by anterior rhinoscopic as well as endoscopic evaluations that has significant hypertrophied inferior turbinate which occupies more than one-third of nasal cavity.

- d) The hypertrophied inferior turbinate grossly appears as enlarged turbinate with thick, pale, grayish-white, and non-shiny covering mucosa.
- e) The significant nasal obstruction due to hypertrophied inferior turbinate must be elucidated objectively by positive rhino-metric evaluation, and\or positive Cottle's sign, and\or positive impairment of olfactory function.

(
)
J

Figure 14:

362 [] , 10.2500/ajra.2010.24.3474. 24 p. .

363 [Laryngoscope (2002)] , *Laryngoscope* 2002 Oct. 112 (10) p. .

364 [Laryngoscope (2008)] , 10.1097/MLG.0b013e31816d728e. *Laryngoscope* 2008 Jul. 118 (7) p. .

365 [(2009)] , 10.1007/s00405-009-0916-9. 2009 Jan 30. 266 p. .

366 [Laryngoscope (2006)] , *Laryngoscope* May 2006. 116 (5) p. .

367 [Tanna et al. (2013)] , N Tanna , M A Lesavoy , Abou-Sayed Ha , R P Gruber , Septoturbinotomy . *Aesthet Surg J* Nov 1 2013. 33 (8) p. .

368 [Kumar et al. (2013)] 'A comparative study of radiofrequency assisted versus microdebrider assisted turbinoplasty in cases of inferior turbinate hypertrophy'. Vijay Kumar , K Kumar , S Garg , S . 10.1007/s12070-013-0657-3. *Indian J Otolaryngol Head Neck Surg* 2014 Jan. 2013 May 5. 66 (1) p. .

372 [Camelo-Nunes and Solé ()] 'Allergic rhinitis: indicators of quality of life'. I C Camelo-Nunes , D Solé . *J Bras Pneumol* 2010. 36 (1) p. .

374 [Seeger et al. ()] 'Bipolar radiofrequency-induced thermotherapy of turbinate hypertrophy: pilot study and 20 months follow-up'. J Seeger , E Zenev , P Gundlach . *Laryngoscope* 2001. 113 p. .

376 [Tanigawa et al. (2000)] 'Carbon dioxide laser vaporization for turbinate: optimal conditions and indications'. T Tanigawa , T Yashiki , K Hayashi , T Sato . *Auris Nasus Larynx* 2000 Apr. 27 (2) p. .

378 [Imamura and Honda (2003)] 'Carbon dioxide laser vaporization of the inferior turbinate for allergic rhinitis: short-term results'. S Imamura , H Honda . *Ann Otol Rhinol Laryngol* 2003 Dec. 112 (12) p. .

380 [Takeuchi et al. (2000)] 'Changes in unilateral nasal airflow in patients with seasonal allergic rhinitis measured in and out of season'. H Takeuchi , M Jawad , R Eccles . *Auris Nasus Larynx* 2000 Apr. 27 (2) p. .

382 [Rhee et al. (2001)] 'Changes of nasal function after temperature-controlled radiofrequency tissue volume reduction for the turbinate'. C S Rhee , D Y Kim , T B Won , H J Lee , S W Park , T Y Kwon , C H Lee , Y G Min . *Laryngoscope* 2001 Jan. 111 (1) p. .

385 [Farmer and Eccles (2006)] 'Chronic inferior turbinate enlargement and the implications for surgical intervention'. S E Farmer , R Eccles . *Rhinology* Dec 2006. 44 (4) p. .

387 [Lippert and Werner (1997)] 'CO2 laser surgery of hypertrophied inferior turbinates'. B M Lippert , J A Werner . *Rhinology* 1997 Mar. 35 (1) p. .

389 [Mittelman ()] 'CO2 laser turbinectomies for chronic, obstructive rhinitis'. H Mittelman . *Lasers Surg Med* 1982. 2 (1) p. .

391 [Lee and Lee] *Comparative study on the long-term effectiveness between coblation and microdebrider-assisted partial turbinoplasty*, J Y Lee , J D Lee .

393 [Sroka et al. (2007)] 'Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates'. R Sroka , P Janda , T Killian , F Vaz , C S Betz , A Leunig . *Lasers Surg Med* 2007 Apr. 39 (4) p. .

396 [Chen et al. (2007)] 'Comparison of microdebrider-assisted inferior turbinoplasty and submucosal resection for children with hypertrophic inferior turbinates'. Y L Chen , C M Liu , H M Huang . *Int J Pediatr Otorhinolaryngol* 2007 Jun. 2007 Apr 5. 71 (6) p. .

399 [Cavaliere et al.] *Comparison of the effectiveness and safety of radiofrequency turbinoplasty and traditional surgical technique in treatment of inferior turbinate hypertrophy*, M Cavaliere , G Mottola , M Iemma .

401 [Cavaliere et al.] *Comparison of the effectiveness and safety of radiofrequency turbinoplasty and traditional surgical technique in treatment of inferior turbinate hypertrophy*, M Cavaliere , G Mottola , M Iemma .

403 [Sapçı et al. ()] 'Comparison of the effects of radiofrequency tissue ablation, CO2 laser ablation, and partial turbinectomy applications on nasal mucociliary functions'. T Sapçı , B Sahin , A Karavus , U G Akbulut . *Laryngoscope* 2003. 113 (3) p. .

406 [Sapçı et al. (2003)] 'Comparison of the effects of radiofrequency tissue ablation, CO2 laser ablation, and partial turbinectomy applications on nasal mucociliary functions'. T Sapçı , B Sahin , A Karavus , U G Akbulut . *Laryngoscope* 2003 Mar. 113 (3) p. .

409 [Jackson and Koch ()] 'Controversies in the management of inferior turbinate hypertrophy: a comprehensive review'. L E Jackson , R J Koch . *Plast Reconstr Surg* 1999. 103 p. .

411 [Stewart et al. ()] *Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale*. *Otolaryngol Head Neck Surg*, M G Stewart , D L Witsell , T L Smith , E M Weaver , B Yueh , M T Hannley . 2004. 130 p. .

414 [Jovanovic and Dokic (1996)] 'Does laser turbinectomy influence local allergic inflammation in the nose?'. S Jovanovic , D Dokic . *Rhinology* 1996 Mar. 34 (1) p. .

416 [Jones and Lancer (1987)] 'Does submucosal diathermy to the inferior turbinates reduce nasal resistance to
417 airflow in the long term?'. A S Jones , J M Lancer . *J Laryngol Otol* 1987 May. 101 (5) p. .

418 [Fradis et al. (2002)] 'Effect of submucosal diathermy in chronic nasal obstruction due to turbinate enlargement'.
419 M Fradis , S Malatskey , I Magamsa , A Golz . *Am J Otolaryngol* 2002 Nov-Dec;23. (6) p. .

420 [Eccles et al. (2005)] 'Efficacy and safety of single and multiple doses of pseudoephedrine in the treatment of
421 nasal congestion associated with common cold'. R Eccles , M S Jawad , S S Jawad , J T Angello , H M Druce
422 . *Am J Rhinol* Jan-Feb 2005. 19 (1) p. .

423 [Farmer et al. (2008)] 'Efficacy of inferior turbinate coblation for treatment of nasal obstruction'. S E Farmer ,
424 S M Quine , R Eccles . 10.1017/S0022215108002818. *J Laryngol Otol* 2009 Mar. 2008 Jun 9. 123 (3) p. .

425 [Gupta et al. (2001)] 'Endoscopic inferior turbinate reduction: an outcomes analysis'. A Gupta , E Mercurio , S
426 Bielamowicz . *Laryngoscope* Nov 2001. 111 (11) p. . (Pt 1)

427 [Ikeda et al. (2006)] 'Functional inferior turbinosurgery (FITS) for the treatment of resistant chronic rhinitis'. K
428 Ikeda , T Oshima , M Suzuki , H Suzuki , A Shimomura . *Acta Otolaryngol* 2006 Jul. 126 (7) p. .

429 [Schmidt et al. (2001)] 'Histopathological verification of clinical indications to partial inferior turbinectomy'. J
430 Schmidt , P Zalewski , J Olszewski , A Olszewska-Ziaber . *Rhinology* 2001 Sep. 39 (3) p. .

431 [Yanez and Mora ()] 'Inferior turbinate debriding technique: ten-year results'. C Yanez , N Mora . *Otolaryngol
432 Head Neck Surg* 2008. 138 p. .

433 [Leong and Eccles (2010)] *Inferior turbinate surgery and nasal airflow: evidence-based management. Curr Opin
434 Otolaryngol Head Neck Surg*, S C Leong , R Eccles . Feb 2010. 18 p. .

435 [Tanna et al. (2014)] 'Inferior turbinoplasty during cosmetic rhinoplasty: techniques and trends'. N Tanna , D
436 D Im , H Azhar , J Roostaeian , M A Lesavoy , J P Bradley . *Ann Plast Surg* Jan 2014. 72 (1) p. .

437 [Fukutake et al. (1986)] 'Laser surgery for allergic rhinitis'. T Fukutake , T Yamashita , K Tomoda , T Kumazawa
438 . *Arch Otolaryngol Head Neck Surg* 1986 Dec. 112 (12) p. .

439 [Takeno et al. (2003)] 'Laser surgery of the inferior turbinate for allergic rhinitis with seasonal exacerbation: an
440 acoustic rhinometry study'. S Takeno , R Osada , T Ishino , K Yajin . *Ann Otol Rhinol Laryngol* 2003 May.
441 112 (5) p. .

442 [Janda et al. ()] 'Laser treatment of hyperplastic inferior nasal turbinates: a review'. P Janda , R Sroka , R
443 Baumgartner , G Grevers , A Leunig . *Lasers Surg Med* 2001. 28 (5) p. . (Review)

444 [Cook et al. (1993)] 'Laser treatment of rhinitis-1 year follow-up'. J A Cook , A W Mccombe , A S Jones . *Clin
445 Otolaryngol Allied Sci* 1993 Jun. 18 (3) p. .

446 [Simmen and Jones ()] *Lateral nasal wall lateralization and pyriform turbinoplasty. in: Manual of Endoscopic
447 Sinus and Skull Base Surgery*, Daniel Simmen , Nick S Jones . 2013. p. 108.

448 [Mori et al. (2002)] 'Long-term effect of submucous turbinectomy in patients with perennial allergic rhinitis'. S
449 Mori , S Fujieda , T Yamada , Y Kimura , N Takahashi , H Saito . *Laryngoscope* 2002 May. 112 (5) p. .

450 [Chen et al.] *Long-term efficacy of microdebrider-assisted inferior turbinoplasty with lateralization for hyper-
451 trophic inferior turbinates in patients with perennial allergic rhinitis*, Y L Chen , C T Tan , H M Huang
452 .

453 [Ozcan et al. (2008)] 'Microdebrider for reduction of inferior turbinate: evaluation of effectiveness by computed
454 tomography'. K M Ozcan , Y Gedikli , I Ozcan , L Pasaoglu , H Dere . *J Otolaryngol Head Neck Surg* Aug
455 2008. 37 (4) p. .

456 [Lorenz and Maier (2013)] 'Microdebrider-assisted inferior turbinoplasty. Minimally invasive technique for the
457 treatment of nasal airway obstruction caused by enlarged turbinates'. K J Lorenz , H Maier . 10.1007/s00106-
458 012-2553-7. *HNO* 2013 Mar. German. 61 (3) p. .

459 [Sacks et al. (2005)] *Modified endoscopic turbinoplasty -long term results compared to submucosal electrocautery
460 and submucosal powered turbinoplasty. Presented at the American Rhinologic Society*, R Sacks , M A Thornton
461 , R N Bousted . May 14, 2005.

462 [Gindros et al. (2009)] 'Mucosal changes in chronic hypertrophic rhinitis after surgical turbinate reduction'. G
463 Gindros , I Kantas , D G Balatsouras , D Kandilopoulos , A K Manthos , A Kaidoglou . *Eur Arch Otorhinolaryngol*
464 2009 Sep.

465 [Schumacher (2004)] 'Nasal dyspnea: the place of rhinomanometry in its objective assessment'. M J Schumacher
466 . *Am J Rhinol* Jan-Feb 2004. 18 (1) p. .

467 [Englander (1995)] 'Nasal laser mucotomy (L-mucotomy) of the inferior turbinates'. M Englander . *J Laryngol
468 Otol* 1995 Apr. 109 (4) p. .

469 [Jovanovic and Dokic (1995)] 'Nd:YAG laser surgery in treatment of allergic rhinitis'. S Jovanovic , D Dokic .
470 *Laryngorhinootologie* 1995 Jul. German. 74 (7) p. .

471 [Otolaryngol Head Neck Surg ()] *Otolaryngol Head Neck Surg*, 2004. 130 p. .

472 [Otolaryngol Head Neck Surg ()] *Otolaryngol Head Neck Surg*, 2005. 133 p. .

473 [Otolaryngol Head Neck Surg (2005)] *Otolaryngol Head Neck Surg*, 2005 Dec. 133 p. .

474 [Stewart et al.] *Outcomes after nasal septoplasty: results from the Nasal Obstruction Septoplasty Effectiveness (NOSE) study*, M G Stewart , T L Smith , E M Weaver , D L Witsell , B Yueh , M T Hannley , J T Johnson
475 .

476 .

477 [Bhandarkar and Smith ()] 'Outcomes of surgery for inferior turbinate hypertrophy'. N D Bhandarkar , T L
478 Smith . *Curr Opin Otolaryngol Head Neck Surg* 2010. 18 (1) p. .

479 [Bhandarkar and Smith (2010)] *Outcomes of surgery for inferior turbinate hypertrophy. Curr Opin Otolaryngol*
480 *Head Neck Surg*, N D Bhandarkar , T L Smith . Feb 2010. 18 p. .

481 [Orabi et al. (2007)] 'Patient satisfaction survey of outpatient-based topical local anesthetic KTP laser inferior
482 turbinectomy: a prospective study'. A A Orabi , A Sen , M S Timms , P Morar . *Am J Rhinol* 2007 Mar-Apr.

483 [Flanagan and Eccles (1998)] 'Physiological versus pharmacological decongestion of the nose in healthy human
484 subjects'. P Flanagan , R Eccles . *Acta Otolaryngol* 1998 Jan. 118 (1) p. .

485 [Wight et al. (1988)] 'Radical trimming of the inferior turbinates and its effect on nasal resistance to airflow'. R
486 G Wight , A S Jones , E Beckingham . *J Laryngol Otol* 1988 Aug. 102 (8) p. . (No abstract available)

487 [Elwany et al. (1999)] 'Radiofrequency bipolar submucosal diathermy of the inferior turbinates'. S Elwany , R
488 Gaimae , H A Fattah . *Am J Rhinol* 1999 Mar-Apr. 13 (2) p. .

489 [Garzaro et al. (2011)] *Radiofrequency Inferior Turbinate Reduction: Long-Term Olfactory and Functional*
490 *Outcomes. Otolaryngol Head Neck Surg*, M Garzaro , M Pezzoli , V Landolfo , S Defilippi , C Giordano
491 , G Pecorari . Sep 20 2011.

492 [Cassano et al. ()] 'Restoration of nasal cytology after endoscopic turbinoplasty versus laser-assisted turbino-
493 plasty'. M Cassano , C Granieri , Del Giudice , A M Mora , F Fiocca-Matthews , E Cassano , P . *Am J*
494 *Rhinol Allergy* 2010.

495 [Kawamura et al. ()] 'Subjective results of laser surgery for allergic rhinitis'. S Kawamura , T Fukutake , N Kubo
496 , T Yamashita , T Kumazawa . *Acta Otolaryngol Suppl* 1993. 500 p. .

497 [Bäck et al.] *Submucosal bipolar radiofrequency thermal ablation of inferior turbinates: a long-term follow-up*
498 *with subjective and objective assessment*, L J Bäck , M L Hytönen , H O Malmberg , J S Ylikoski .

499 [Von Haacke and Hardcastle ()] 'Submucosal diathermy of the inferior turbinate and the congested nose'. N P
500 Von Haacke , P F Hardcastle . *ORL J Otorhinolaryngol Relat Spec* 1985. 47 (4) p. .

501 [Talaat et al. (1987)] 'Submucous diathermy of the inferior turbinates in chronic hypertrophic rhinitis'. M Talaat
502 , E El-Sabawy , F A Baky , A A Raheem . *J Laryngol Otol* 1987 May. 101 (5) p. .

503 [Ishida et al. (2003)] 'Submucous electrocautery following submucous resection of turbinate bone—a rationale of
504 surgical treatment for allergic rhinitis'. H Ishida , T Yoshida , T Hasegawa , M Mohri , M Amatsu . *Auris*
505 *Nasus Larynx* 2003 May. 30 (2) p. .

506 [Ogawa et al. (2007)] 'Submucous turbinectomy combined with posterior nasal neurectomy in the management
507 of severe allergic rhinitis: clinical outcomes and local cytokine changes'. T Ogawa , S Takeno , T Ishino , K
508 Hirakawa . *Auris Nasus Larynx* 2007 Sep. 2007 Apr 11. 34 (3) p. .

509 [Batra et al. (2009)] 'Surgical management of adult inferior turbinate hypertrophy: a systematic review of the
510 evidence'. P S Batra , A M Seiden , T L Smith . *Laryngoscope* Sep 2009. 119 (9) p. .

511 [Chhabra and Houser (2009)] 'The diagnosis and management of empty nose syndrome'. N Chhabra , S M Houser
512 . *Otolaryngol Clin North Am* Apr 2009. 42 (2) p. .

513 [Zhi (2001)] *The effect of submucosal diathermy to the inferior turbinates on nasal airway resistance*, Lin Chuang
514 Er Bi Yan Hou Ke Za Zhi . 2001 Aug. Chinese. 15 p. .

515 [Jones et al. (1985)] 'The effect of submucosal diathermy to the inferior turbinates on nasal resistance to airflow
516 in allergic and vasomotor rhinitis'. A S Jones , J M Lancer , A A Moir , J C Stevens . *Clin Otolaryngol Allied*
517 *Sci* 1985 Oct. 10 (5) p. .

518 [Thomas et al. (1988)] 'The effects of inferior turbinate outfracture on nasal resistance to airflow in vasomotor
519 rhinitis assessed by rhinomanometry'. P L Thomas , D G John , W V Carlin . *J Laryngol Otol* 1988 Feb. 102
520 (2) p. .

521 [Hanif et al. (2000)] 'The nasal cycle in health and disease'. J Hanif , S S Jawad , R Eccles . *Clin Otolaryngol*
522 *Allied Sci* Dec 2000. 25 (6) p. .

523 [Lai and Corey ()] 'The objective assessment of nasal patency'. Vws Lai , J P Corey . *Ear Nose Throat J* 1993.
524 72 p. .

525 [Chhabra and Houser (2011)] 'The surgical management of allergic rhinitis'. N Chhabra , S M Houser .
526 10.1016/j.otc.2011.03.007. *Otolaryngol Clin North Am* 2011 Jun. 44 (3) p. . (Review)

527 [Passali et al. ()] 'Treatment of inferior turbinate hypertrophy: a randomized clinical trial'. D Passali , F M
528 Passali , V Damiani , G C Passali , L Bellussi . *Ann Otol Rhinol Laryngol* 2003. 112 p. .

529 [Hol and Huizing ()] 'Treatment of inferior turbinate pathology: a review and critical evaluation of the different
530 techniques'. Mks Hol , E H Huizing . *Rhinology* 2000. 38 p. .

531 [Hol and Huizing (2000)] 'Treatment of inferior turbinate pathology: a review and critical evaluation of the
532 different techniques'. M K Hol , E H Huizing . *Rhinology* Dec 2000. 38 (4) p. .

533 [Janda et al. (2002)] 'YAG and diode laser treatment of hyperplastic inferior nasal turbinates'. P Janda , R Sroka
534 , C S Betz , G Grevers , A Leunig , Ho . *Laryngorhinootologie* 2002 Jul. German. 81 (7) p. .