

1 Results of a Test of Temporal Resolution in Elderly With 2 Different Levels Socioeconomic Cultural

3 Lorena Kozlowski¹

4 ¹ Universidade Tuiuti do ParanA

5 *Received: 14 April 2015 Accepted: 5 May 2015 Published: 15 May 2015*

6

7 **Abstract**

8 Purpose: to apply, analyze and discuss the results of the Random Gap Detection Test
9 (RGDT) in two groups of elderly people with hearing loss, consistent with presbycusis, who
10 wear hearing aids, but are in different socioeconomic and cultural levels. Methods:
11 cross-sectional descriptive study. The study included 85 elderly people with presbycusis,
12 divided into: Group A (those in a higher cultural socioeconomic level); and Group B (subjects
13 with less favored socioeconomic cultural status). All participants responded to a specific
14 interview, underwent pure tone audiometry for air and bone conduction and underwent a
15 Random Gap Detection Test. Results: the group with higher socioeconomic and cultural status
16 responded significantly better to the test, while the less favored group had significant
17 difficulties in understanding the purpose of the test. Conclusion: The RGDT seems to be
18 influenced by socioeconomic and cultural issues. We suggest caution in its use in
19 disadvantaged cultural and socioeconomic populations.

20

21 *Index terms*— presbycusis; elderly; temporal resolution; hearing test.

22 **1 I. Introduction**

23 One of the complaints that most annoys elderly individuals with cochlear hearing loss, a characteristic of
24 presbycusis, is the difficulty in understanding speech sounds even when wearing hearing aids. 2 Such complaints
25 may be associated with temporal processing, which in turn, is the ability to process minimum acoustic events
26 that are fundamental to the perception of speech and music, or changes in the sound within a restricted period,
27 translating into an essential component of a larger capacity for auditory processing. [3][4] Temporal resolution
28 (RT) is defined as the minimum time required for the central nervous system to differentiate two acoustic stimuli.
29 The ability of the auditory system to detect rapid changes in sound stimulus is an important factor in speech
30 perception because it contributes to the identification of small phonetic elements in speech, and alterations in
31 this auditory ability suggest interference in the perception of normal speech and the recognition of phonemes. 5
32 The minimum interval identified by the patient is called the temporal resolution threshold. 3 Currently there is
33 a growing interest by healthcare professionals who treat elderly patients with hearing aids to expand audiological
34 research and include tests of auditory processing in order to identify conditions favorable or unfavorable to the
35 use of sound amplification.

36 A test used in speech-language therapy to investigate RT is the Random Gap Detection Test (RGDT). The
37 test consists of the production of pure tones randomly paired with time intervals ranging from zero to 40ms, and
38 the test subject is oriented to respond upon hearing one or two stimuli. According to the test's author 6 , it is
39 expected that individuals without RT alterations can identify gaps up to 20ms.

40 Individuals with higher thresholds than 20ms can have difficulty in understanding speech because if the
41 subject's RT threshold is greater than the duration of the sounds formed in the word, there is a reduction
42 of the extrinsic redundancies in speech and thus this person may have hearing differentiation difficulties. 7 The
43 RGDT has been used in research on populations of different age groups. 1,[8][9] Because of this, it is known,

4 IV. DISCUSSION

44 for example, that the RT threshold increases in elderly individuals. 10 Also investigated has been the variable
45 of "social level", and surveys show that auditory processing tests and RT may be influenced by socioeconomic
46 factors in the infant population. 9,11 Could such data be extrapolated to the elderly? After all, it is known that
47 individuals in the lower income strata, regardless of age, have worse health and poorer use for health services. 12
48 As the authors of this article develop their activities with elderly people, an objective of this work has become to
49 apply, analyze and discuss the results of RGDT in two groups of elderly subjects with hearing loss consistent with
50 presbycusis, and who are hearing aid ging may affect the processing of auditory information, either by peripheral
51 changes, in the case of presbycusis, for central alterations, in the case of decreased efficiency of auditory skills.
52 The participants were 100 individuals divided into two groups:

53 Group A -46 individuals of both genders, suffering from presbycusis, hearing aid users, and of a higher
54 socioeconomic and cultural class (all with degrees of higher learning and personal assets). Group B -39 individuals
55 of both genders, suffering from presbycusis, hearing aid users, and of a lower socioeconomic and cultural class
56 (with an education only until primary school).

57 It was established as inclusion criteria to have a diagnosis of symmetrical sensorineural hearing loss, mild to
58 moderately severe, consistent with presbycusis, and bilateral hearing aids indicated for more than six months.

59 Data collection occurred in two speechlanguage clinics -one private and the other public and accredited to the
60 Unified Health System (SUS). The sample was selected from the follow-up visits of the service users.

61 All participants responded to a specific interview, which collected data on their hearing and the effective use
62 of hearing aids.

63 Following that, they underwent threshold audiometry by air and bone conduction and were subjected to the
64 RGDT at 50dbSL.

65 The RGDT results were classified according to the following categorization: up to 5ms, from 5.1 to 9.9ms,
66 from 10 to 14.9ms, from 15 to 19.9ms and greater than 20ms. Subjects were considered normal if the RGDT
67 results were between 2 and 20ms.

68 The studies were performed in an audiometric booth and the audiometer was evaluated according to the
69 standards of the Federal Council of Speech Therapy (CFFa).

70 The results were statistically analyzed using descriptive methods (mean, standard deviation, figures) and
71 inferential methods (Chi-square), adopting a 0.05 significance level (5%).

72 2 III. Results

73 In Group A, 42% of the respondents were women and 58% were men. The minimum age was 61, the maximum
74 age 83, and the mean age 68. In Group B, 47% were women and 53% were men, with a minimum age of 60, a
75 maximum of 79, and an average age of 71.

76 The categorization of the sample according to the degree and configuration of hearing loss is recorded in Table
77 1. Hearing loss from mild to moderate was significantly higher in both groups.

78 3 J

79 The comparison between the groups according to the results of the RGDT is described in Table 2 and 3. There
80 is a significant difference between the groups, and the measured intervals in Group A were predominantly less
81 than 20ms, while for Group B measured intervals were mostly higher than 20ms.

82 All subjects underwent training prior to the test in order to understand the methodological process. Group A
83 showed no difficulties in understanding the way the test worked, with the prior training being sufficient. However,
84 Group B, made up of individuals with lower socioeconomic and cultural levels, required at least three training
85 sessions.

86 4 IV. Discussion

87 In both groups, the predominant type of hearing loss was sensorineural of a mild to moderate degree, and
88 downward sloping, i.e., results compatible with hearing loss that may be associated with aging, considering the
89 age of the sample. This type of loss interferes greatly in the auditory discrimination of speech, especially in noisy
90 or degraded environments. 3,[13][14] The RGDT allows for a training session prior to the application of the test.
91 Normally at this time, the speech therapist guides the examinee about the type of stimulus to be heard and
92 the type of response to be given. Respondents in Group A received the guidelines only once, while in Group B
93 there was need for three training sessions. This greater difficulty in understanding the test may be related to
94 the hearing loss itself; however, this possibility could be ruled out because in Group A, which also had hearing
95 loss, this was not an impediment in the exam. We therefore believe that socioeconomic and cultural class may
96 influence the understanding of the examination in question.

97 In the same way, we can make this inference in the analysis of the answers to the test presented by the two
98 studied groups, since in Group A the score ranged from 5ms to 20ms and in Group B it was higher than 20ms.
99 This difference was significant from a statistical point of view.

100 Making a purely auditory analysis, it is clear through the evidence 15 , that the elderly often demonstrate the
101 need for more time to process the information received and the speed with which these processes are carried out,
102 which can affect hearing abilities.

103 Queiroz et al. 10 state that temporal resolution thresholds are increased in the elderly compared to young
104 adults with the same peripheral auditory conditions, as recorded in this work, where more than 38% of Group A
105 and 100% of Group B showed RGDT results that were greater than 14ms.

106 However, in our study we found that socioeconomic and cultural conditions can also affect the quality of
107 answers in auditory perception, because the less favored group had worse RGDT results. This fact is supported
108 by the literature. Balen et al. 9 investigated the influence of socioeconomic status in the temporal resolution
109 of schoolchildren in two evaluation protocols. 44 children were evaluated and divided into three groups: Group
110 1: high socioeconomic status; Group 2: average socioeconomic status; Group 3: low socioeconomic status. The
111 RGDT was applied as well as a Gaps-In-Noise (GIN) test. The average performance of Groups 1, 2 and 3 were
112 higher in the RGDT in GIN. Regarding socioeconomic level, both tests showed statistically significant differences
113 among the groups, i.e., there was an influence by socioeconomic status on the temporal resolution measured by
114 the above tests.

115 The RGDT is an important tool in assessing the functional integrity of temporal processing in the elderly. 10

116 5 V. Conclusions

117 From the data obtained in this study, it is concluded that socioeconomic and cultural factors influence the quality
118 of the responses in the RGDT because:

119 a) The group with lower socioeconomic-cultural conditions showed worse results and; b) The same group had
difficulty understanding the proposed examination. ¹

1

This is an exploratory, descriptive study. The
research was approved by the Research Ethics
Committee
participants signed a consent form, authorizing the use
of the collected data.

under the number GEP/02A/2008.

Figure 1: 1 A

1

Year 2015
Volume XV Issue 1
Version I
()

Medical Research	HEARING LOSS LEVEL	GROUP	%	GROUP	%	82	P
	Light to Moderate	A	100	B	18		0.0000*
	Moderately Severe	Frequency		Frequency			
		46	-	32	7		
Global Journal of	TOTAL CONFIGURATION	46	1 44	100	2 34	10	0 0.1684
	Horizontal Sloping			96		10	87
	U-Shaped	1	2	-		0	
	Notched	-	0	1		3	
	TOTAL	46	100	39	10		
					0		

[Note: Note: Chi-square test ($p < 0.05$). For the application of statistical tests, only two variables were considered:
Horizontal and Sloping.]

Figure 2: Table 1 :

120

5 V. CONCLUSIONS

2

Results in ms	GROUP Frequency	A %	GROUP Frequency	B %
Up to 5ms	7	15	0	—
5.1 -9.9ms	10	21	0	—
10 -14.9ms	11	23	0	—
15 -19.9ms	16	34	0	—
Over 20ms	2	4	39	100
TOTAL	46	100	39	100

Figure 3: Table 2 :

3

GAPS	GROUP Frequency	A %	GROUP Frequency	B %	P
Less than 20ms More than 20ms	44 2	96 4	-39	0 100	0.0000*

Note: Chi-square test (p<0.05)

Figure 4: Table 3 :

121 [Balen et al. ()] ‘A influência do nível socioeconômico na resolução temporal em escolares’. S A Balen , Mrm
122 Boeno , G Liebal . *R. Soc. Bras. Fonoaudiol* 2010. 15 (1) p. .

123 [Rosa et al. ()] ‘A relação entre o envelhecimento e a habilidade de escuta dicótica em indivíduos com mais de
124 50 anos’. Mrd Rosa , A Ribas , J M Marques . *Rev. bras. geriatr. Gerontol* 2009. 12 (3) p. .

125 [Lima-Costa et al. ()] ‘A situação socioeconômica afeta igualmente a saúde de idosos e adultos mais jovens no
126 Brasil? Um estudo utilizando dados da Pesquisa Nacional por Amostras de Domicílios -PNAD/98’. M F
127 Lima-Costa , S Barreto , L Giatti . *Ciência e Saúde Coletiva* 2002. 7 (4) p. .

128 [Quintero et al. ()] ‘Avaliação do processamento auditivo de indivíduos idosos com e sem presbiacusia por meio
129 de teste de reconhecimento em dissílabos em tarefa dicótica’. S M Quintero , Rmb Marotta , Sam Marone .
130 *Revista brasileira de otorrinolaringologista* 2002. 68 (1) p. .

131 [Queiroz et al. ()] ‘Desempenho no Teste de Detecção de Intervalo Aleatório -Random Gap Detection Test
132 (RGDT): estudo comparativo entre mulheres jovens e idosas’. D S Queiroz , Fcab Barreiro , T M Santos
133 . *Rev. soc. bras fonoaudiol* 2009. 14 (4) p. .

134 [Queiroz et al. ()] ‘Limiar de resolução temporal auditiva em idosos’. D S Queiroz , Fcab Barreiro , T M Santos
135 . *Pró-Fono R. Atual. Cient* 2010. 22 (3) p. .

136 [Warren (ed.) ()] *Perception of acoustic sequences: global integration versus temporal resolution*, R M Warren .
137 Mac Adams S, Bingand E (ed.) 2001. New York: Orford. p. . (Thinking in sound: the cognitive psychology
138 of human audition)

139 [Pinheiro and Desqualda ()] ‘Processamento auditivo em idosos: estudo da interação por meio de testes com
140 estímulos verbais e não-verbais’. Mmc Pinheiro , P L Desqualda . *Rev. Bras. Otorrinolaringol* 2004. 70 (2) p.
141 .

142 [Azzolini and Ferreira ()] ‘Processamento Auditivo Temporal em Idosos’. V C Azzolini , Midc Ferreira . *Arg. Int.*
143 *Otorrinolaringol* 2010. 14 (1) p. .

144 [Samelli and Schochat ()] ‘Processamento auditivo, resolução temporal e teste de detecção de gap: revisão da
145 literatura’. G A Samelli , E Schochat . *Rev. CEFAC* 2008. 10 (3) p. .

146 [Keith ()] *Random Gap Detection Test. Auditec of Saint Louis*, R W Keith . 2000.

147 [Amaral et al. ()] ‘Resolução temporal: procedimentos e parâmetros de avaliação em escolares’. M T Amaral ,
148 Pmf Martins , Mfc Santos . *Braz. j. otorhinolaryngol* 2013. 79 (3) p. .

149 [Becker et al. ()] ‘SSW test in school children aged between 7 and 10 from two dissimilar socioeconomic cultural
150 backgrounds’. K T Becker , M J Costa , A H Lessa , A G Rossi . *Int. Arch. Otorhinolaryngol* 2011. 15 (3) p. .

151 [Parra et al. ()] ‘Testes de padrão de freqüência e de duração em idosos com sensibilidade auditiva normal’. V M
152 Parra , Mcm Iorio , M M Mizahi , G S Baraldi . *Rev. Bras. Otorrinolaringol* 2004. 70 (4) p. 51723.

153 [Samelli and Schochat ()] ‘The gaps-in-noise test: gap detection thresholds in normal-hearing young adults’. A
154 G Samelli , E Schochat . *Int J Audiol* 2008. 47 (5) p. .