

1 Safety and Efficacy of Human Embryonic Stem Cells for the 2 Treatment of Cerebrovascular Accident: A Case Series

3 Dr. J.K. Barthakur

4 Received: 14 June 2015 Accepted: 3 July 2015 Published: 15 July 2015

5

6 **Abstract**

7 Background: To evaluate the efficacy and safety of hESC therapy on 22 patients with CVA.
8 Materials and methods: The present study included patients with CVA and was conducted
9 between 29 Dec 2004 and 03 Oct 2011 at a single site in New Delhi, India. The study consisted
10 of six treatment phases (T1, T2, T3, T4, T5, and T6), each phase separated by a gap phase.
11 Patients were evaluated for improvement on the basis of European Stroke Scale (ESS) at
12 baseline and at the end of each treatment period. The ESS scores ranged from 0 (minimum
13 score) to 100 (maximum score). Results: A total of 22 patients were included and all received
14 intensive dosing with hESCs in T1. Eight patients returned for T2, 6 patients for T3, 4
15 patients for T4, and only 2 patients each for T5 and T6. Median ESS scores increased from
16 baseline through all the treatment periods indicating improvement in the condition of patients.
17 All affected patients showed an improvement in gait (22 patients); speech (15 patients); level
18 of consciousness (2 patients); comprehension and gaze (1 patient each) by at least one point at
19 the end of T6. In addition, patients showed improvement in walking, balance (sitting and
20 standing), and spasticity after receiving hESC therapy. Overall, 11 patients (50

21

22 **Index terms**— cerebrovascular accident, hESC therapy.

23 **1 I. Introduction**

24 cerebrovascular accident (CVA) or stroke may result from multiple reasons including thrombus formation in the
25 atherosclerotic cerebral blood vessels, hemorrhage due to rupture of a blood vessel (resulting from aneurysm),
26 or due to a travelling clot which may block blood flow to a particular area in the brain [1]. CVA is one of the
27 leading causes of mortality globally [2]. According to the World Health Organization (WHO), 15 million people
28 suffer from stroke, of which 5 million die, and 5 million experience permanent disabilities as a result of stroke
29 every year ??3].

30 Several risk factors contribute to the occurrence of CVA. The Reasons for Geographic And Racial Differences
31 in Stroke (REGARDS) study showed that Author ? ?: e-mails: geetashroff@hotmail.com, jkbarthakur@bol.net.in
32 smoking, poor diet, lack of physical activity, body mass total cholesterol, and high fasting blood glucose are the
33 risk factors that may contribute to CVA [4]. In addition, the REGARDS study also showed that the cognitive
34 skills of patients with stroke are compromised. Das et al demonstrated that the incidence of stroke related deaths
35 is higher among the elderly [5].

36 There are multiple aspects of CVA treatment which begin from the time of first attack. The American Heart
37 Association/American Stroke Association (AHA/ ASA) encourages education on stroke management to enhance
38 early stroke detection and pre-hospital stroke management [6]. Effective neuroprotection can be achieved by
39 initiating treatment of stroke within hours of injury [7]. Tissue plasminogen activator (tPA), anticoagulants,
40 antiplatelet agents, vasodilators, neuroprotective agents, and surgical interventions are conventional therapeutic
41 agents available for the management of stroke [8]. However, the use of these agents is considered helpful within
42 few hours of stroke attack. Most patients with CVA continue to live a compromised life due to decreased quality
43 of life (QoL), impaired cognitive skills, and several psychological symptoms [9,10].

6 STUDY DESIGN

44 Previous research has shown that stem cell therapy may help restore the neurological functions among patients
45 with CVA. Bone marrow derived stem cells have demonstrated participation in neurogenesis and angiogenesis
46 resulting in restoration of normal function [7]. Intracerebral transplantation of the neuronal stem cells in patients
47 with stroke showed stable motor function even six months after transplantation [7]. Lindvall et al showed improved
48 forelimb performance after transplantation of neuronal stem cells in stroke affected rodents [11]. Huang et al
49 showed decrease in oxygen glucose deprivation and decrease in the rate of apoptosis via interlukin-6 and vascular
50 endothelial growth factor signaling pathways after transplantation of mesenchymal stem cells (MSCs) [12].

51 Although several studies evaluating the effect of stem cells in the treatment of CVA are available, the evaluation
52 of human embryonic stem cells (hESCs) is less explored. In the present study, we aimed to evaluate the efficacy
53 and safety of hESC therapy on 22 patients with CVA.

54 2 II. Materials and Methods

55 3 a) Study Characteristics

56 The present single cohort study included patients with CVA and was conducted between 29 Dec 2004 and 03
57 Oct 2011 at a single site in New Delhi, India. This study evaluated the safety and efficacy of hESC therapy in
58 patients with CVA.

59 The study protocol was approved by the Independent Institutional Ethics Committee. The institutional
60 committee for stem cell research and therapy at our institute reported the clinical study to the National Apex
61 Body and the Indian Council of Medical Research (ICMR). The study was conducted in accordance to the
62 Declaration of Helsinki [7]. A written informed assent/consent was obtained from the patients/parents or legal
63 guardians prior to the treatment.

64 4 b) Inclusion and Exclusion Criteria

65 Patients who approached our institute with a documented diagnosis of CVA and those who were willing to provide
66 a written informed consent were included.

67 Patients who had previously received any other form of stem cell therapy simultaneously or less than a year of
68 receiving hESC and patients who were not willing to provide a written informed consent were excluded. Pregnant
69 and lactating women were also excluded.

70 5 c) Removal of Patients from Therapy

71 The patients who willingly wanted to discontinue the study were removed from therapy. Death of the patient or
72 adverse events (AE) which were not related to hESC therapy led to discontinuation from the study. Cell Culture,
73 Preparation, and Transplantation

74 The hESCs were derived from a primary cell line of pre-embryonic cell through two secondary cell lines derived
75 by directed neuronal and non-neuronal differentiation of primary cell. The detailed cell culture technique has been
76 described elsewhere (detailed compositions comprising human embryonic stem cells and their derivatives, methods
77 of use, and methods of preparation is available at <http://patentscope.wipo.int/search/en/WO2007141657>). The
78 cells have been characterized and are chromosomally stable [13].

79 6 Study Design

80 The study consisted of six treatment phases (T1, T2, T3, T4, T5, and T6), each phase separated by a gap phase.
81 After the patients were diagnosed with CVA, the dosage and schedule of hESC was administered according to a
82 protocol (Fig ??). The treatment schedule for each patient was individualized and modified as per the ongoing
83 process of patient evaluation. Each patient was administered 0.05 mL hESCs subcutaneously to observe any
84 hypersensitivity, pain or inflammation reactions at the site of injection for 24 hr. If the patient did not show
85 any sign of hypersensitivity reactions 24 hr after the administration of test dose, the patient started to receive
86 intensive dosing.

87 In T1, 0.25 mL hESCs were administered twice daily for 8 weeks. During T1, patients also received intravenous
88 (IV) infusion of hESCs in 100 mL of normal saline which was repeated every 10 days and a priming dose of hESC
89 by one of the supplemental routes by rotation (caudal injection, deep spinal injection, branchial plexus injection,
90 and epidural route) for 5-14 days. hESCs were administered through the caudal route to ensure they reach the
91 spinal fluid and regenerate the spinal cord and allow deep muscles to repair.

92 At the end of T1, the patients were discharged from the hospital and instructed to return for T2 and T3
93 which lasted for 4 weeks, each with a gap phase of 3 to 6 months in-between. During T2 and T3, the patients
94 received 0.25 mL of hESC intramuscularly (IM), 1 mL of hESC every 10 days intravenously, and 1 dose of hESC
95 every 7 days by supplemental routes by rotation as in T1. In addition to hESC therapy, all patients received
96 physiotherapy and occupational therapy. The detailed treatment plan is illustrated in Figure ??.

97 7 d) Efficacy and Safety Evaluation

98 The efficacy variable included assessment of European Stroke Scale (ESS) in each patient at baseline and at the
99 end of each treatment period [14]. This scoring system assessed the functional disability of the patients and the
100 prognosis of the patients suffering from CVA.

101 8 Volume XV Issue II Version I

102 Year 2015

103 9 ()

104 The ESS scores ranged from 0 (minimum score) to 100 (maximum score) and evaluated the patients on
105 14 parameters including consciousness, comprehension, speech, visual field, gaze, facial movement, arm in
106 outstretched position, arm raising, extension of wrist, fingers, leg maintained in position, leg flexing, dorsiflexion
107 of foot and gait. Each parameter of evaluation has different scores based on the extent to which the patient is
108 affected. A completely normal patient would score 100 and a maximally affected person would score 0 on the ESS
109 scale. In addition to ESS scores, we also analyzed improvement in other important parameters which are usually
110 compromised in stroke patients scores developed in-house. These scores were used to assess the improvement in
111 walking, balance (sitting and standing) and spasticity.

112 All AEs were documented during the study. In addition, the severity (1-mild; 2-moderate; 3-severe),
113 seriousness, duration, nature of treatment or intervention to manage the event, and the outcome of the AE
114 including the causality in the opinion of the investigator were documented.

115 10 e) Statistical Analysis

116 Intention to treat (ITT) population consisted of all patients who had received at least one test dose followed by
117 intensive doses. The population included in the safety analysis was excluded from the efficacy evaluation. Only
118 patients for whom all data was available were included in the statistical analysis. Patients with missing data were
119 excluded. All demographic data of the patients was analyzed with descriptive statistics. The summary statistics
120 of median, minimum and maximum values were presented. The AEs were summarized using number of patients
121 (n), percentage (%) and system organ class (SOC) and preferred term (PT) for each study period and overall
122 study period. A p value of less than 0.05 was considered to be statistically significant (5% level of significance).
123 Statistical analysis was performed using software SPSS version 19 (IBM Corporation, Armonk, NY).

124 11 III. Results

125 12 a) Here Study Patients

126 A total of 22 patients were included in the study and all patients received intensive dosing with hESCs. Most
127 of the patients included were males (63.6%) with a mean age of 61.8 yr. All the 22 patients received hESC
128 during T1, 8 patients returned for T2, 6 patients returned for T3, 4 patients returned for T4, and only 2 patients
129 each returned for T5 and T6. Of the 22 patients, 14 patients had received treatment only once, 2 patients each
130 received 2, 3, 4, and 6 treatment phases.

131 13 Efficacy Evaluation b) ESS Scores

132 Median ESS scores increased from baseline through all the treatment periods indicating improvement in the
133 condition of patients. The change in ESS scores at each treatment phase and the change from baseline are
134 summarized in Table 1. At baseline, the median ESS score for the affected 22 patients was 61 (24, ??6). At the
135 end of T1, the ESS score increased to 74 (42, 93). Eight patients returned for T2 and the ESS score at the end
136 of this period was 67 (52, 92) for these patients. For T3, 6 patients returned and the ESS score was 67 (66, 79)
137 at the end of this period. The ESS score at the end of T4 was 70 (66, 79) and 4 patients received hESC therapy
138 in this period. A total of 2 patients each returned for T5 and T6 and the ESS scores at the end of these periods
139 were 74 (72, 76) and 81 (76, 85), respectively. The change in the ESS score of each patient per treatment phase
140 is presented in Table 2. All the 22 patients included in the present study had problem walking before receiving
141 hESC therapy. However; after receiving hESC therapy an improvement in walking by at least one level occurred
142 in a total of 21 patients. Of the 21 patients who had affected balance while standing, 20 patients showed an
143 improvement by at least one level after receiving hESC therapy. In addition, all the affected patients showed
144 improvement in balance while sitting (20 patients); and spasticity ??17 patients).

145 In addition to the ESS scores of the patients, all patients were evaluated for recovery using single photon
146 emission computerized tomography (SPECT) scan and magnetic resonance imaging (MRI). At the end of therapy
147 (T6) most patients showed improved perfusion on SPECT scan. (

148 14 c) Safety Evaluation

149 Overall, 4 patients experienced 11 AEs during the entire duration of the study. Of these, 3 patients experienced
150 AEs in T1 and 1 patient experienced AEs in T2. However, no AEs were reported in T3, T4, T5 and T6. The

151 most commonly experienced AEs included weakness/dizziness (3 patients, 27.3%); pain in shoulder, wrist, and
152 joint (2 patients, 18.2%); constipation; fever; anxiety; blurred vision; diarrhea; and acidity (1 patient each, 9.1%).
153 Of all the AEs experienced by the patients, 45% were mild and 55% were moderate in intensity. All AEs reported
154 during the study period resolved within 48 hr. No serious adverse events (SAEs) and deaths were reported during
155 the study (Table 4).

156 15 IV. Discussion

157 The present study has shown promising results among the patients with CVA after treatment with hESC therapy.
158 Most of the patients included had difficulty in maintaining leg position, leg flexion, gait, arm outstretched position,
159 raising of arms and fingers, foot dorsiflexion, wrist extension, and experienced difficulty in speech. However, these
160 patients demonstrated an improvement in their condition after receiving hESC therapy. After receiving hESC
161 therapy, an improvement by at least one level was noted in gait (22 patients); speech (15 patients); level of
162 consciousness (2 patients); comprehension and gaze (1 patient each). Improvement in these parameters showed
163 a better QoL among most patients included in the present study. The patients who received hESC therapy at
164 the early stages of CVA showed a better improvement in most aspects as compared with patients who received
165 hESC therapy at later stages of CVA. SPECT scan done after the therapy showed normal perfusion as compared
166 with SPECT scan done before the therapy. (Figure 2

167 16 and Fig 3).

168 Kondziolka et al evaluated the effect of neuronal stem cells on patients with stroke using ESS scores and found
169 that mean total ESS scores of patients increased from 69.3 at baseline to 74.4 at 6 months. In addition, this
170 study demonstrated an improvement in functional deficits among patients with stroke [15]. However, the results
171 of our study showed an improvement in both functional and motor deficits using hESCs.

172 CVA is third among all the leading causes of death globally [8]. The increasing incidence of stroke has led to
173 rising healthcare costs [16]. Although treatment of patients with stroke is available with tPA, it has a narrow
174 time window (within 3 hr of onset) [17] and several contraindications due to which it is available to less than 5%
175 stroke patients [18]. Decreased QoL makes it extremely difficult for these patients to perform their daily activities.
176 According to a study conducted by Kim et al, patients with stroke have decreased functional independence, social
177 interaction and reduced QoL [19]. Most of the patients with stroke are unable to walk and maintain balance
178 while sitting and standing. According to the stroke association patients with stroke are unable to sit or stand
179 while maintaining balance and may also experience trouble walking [20]. In a study conducted by Weerdt et al
180 to identify different problems associated with stroke, 25.7% patients showed lack of active movement and general
181 mobility and 19.5% patients showed imbalanced muscle tone [21] does not consider improvement in walking and
182 balance. Therefore, we analyzed improvement in these parameters using an in-house scoring system. Most of the
183 patients showed an improvement in walking, balance problems, and spasticity after receiving hESC therapy.

184 Stem cells possess self-renewal and multipotency features and have the ability to differentiate into any cell type
185 in vivo. Of the different types of stem cells, embryonic stem cells are considered to possess the highest potential
186 to give rise to any cell type and are referred to as pluripotent cells. Stem cells are capable of forming synaptic
187 connections in the stroke injured brain after transplantation. Stem cells have neuroprotective properties which
188 help reverse the damage caused by stroke [18].

189 Stem cell therapy is gaining more importance for the treatment of CVA. Most studies conducted to evaluate
190 the effect of stem cell therapy suggest that stem cells have a neuroprotective effect. Chen et al demonstrated that
191 adipose tissue-derived stem cells (ADSCs) restore brain function through several mechanisms including secretion
192 of vascular endothelial growth factor (VEGF) for angiogenesis of the injured region, stimulation of brain repair
193 markers and reduction of brain injury derived apoptosis [22].

194 A study conducted by Chang et al showed that hESC derived neural precursor cells (NPCs) migrate and
195 survive in the infarct region and show improvement in functional deficits in rodents with ischemic stroke. This
196 study reported that improved functional deficits may be associated with neurorestorative and neuroprotective
197 effects of the transplanted hESC-NPCs [23]. Another study showed that hESC derived neural progenitor cells
198 improved regenerative activities and sensory function without immune suppression when transplanted into the
199 ischemic core and penumbra region after ischemic stroke in an animal model [24].

200 There are very few studies which have shown the effect of hESCs in the treatment of stroke. The difficulty in
201 isolation of hESCs has restricted evaluation of their potential in the treatment of CVA. After being transplanted,
202 hESCs grow in the affected area to replace the degenerated cell type. hESCs regenerate damaged cells by
203 communicating with the damaged area and "homing" in the site of injury. This often occurs by the release of
204 chemokines, cytokines, and growth factors from the site of injury [25]. In addition, the route of administration
205 was selected as this shows an impact on the migration of hESCs and their ability to "home" in the damaged tissue.
206 MSCs have also shown the influence of administration route on their potential to migrate and home at the site
207 of injury [26]. The route of administration and the dosing schedule of hESCs play a vital role in their mechanism
208 of action. The IM and IV routes were used to facilitate faster migration and transplantation of the hESCs to the
209 affected area. A gap phase was included between each treatment period to facilitate the process of homing, and
210 regeneration within the body. Adequate time intervals were maintained between each treatment period for the

211 elucidation of maximum effect in the affected areas of the brain. Patients were treated in subsequent treatment
212 phases after carefully monitoring the extent of improvement with MRI and SPECT scan. In the present study,
213 we used hESCs which were isolated using a patented in-house technique for the treatment of patients (United
214 States Granted Patent-WO 2007/141657A PCT/1B 2007 Published 13 Dec 2007). These cells do not have any
215 xeno-product in them.

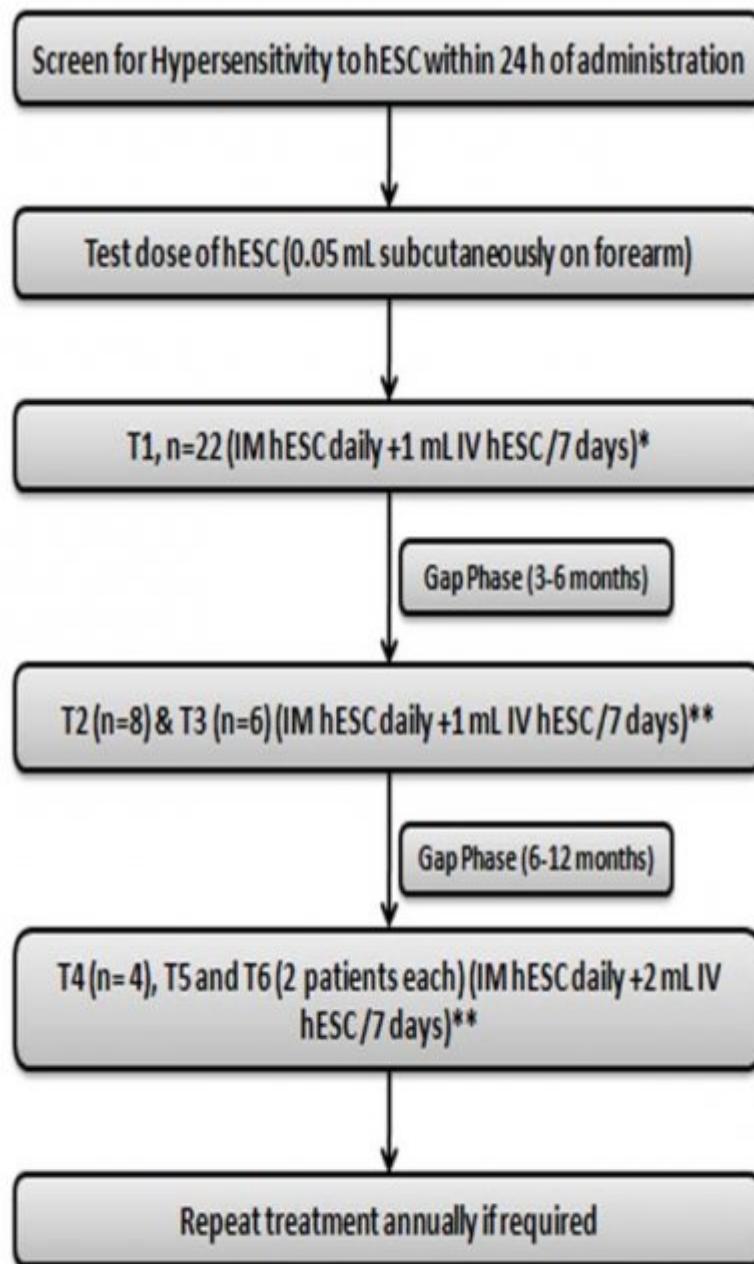
216 V.

217 **17 Conclusion**

218 In conclusion, the results of the present study have demonstrated effective improvement in the condition of
219 patients with CVA. Most patients showed improved cognitive skills and regained their functional ability which
220 improved the QoL of the patients included in the study. Although AEs were reported, no patients experienced
221 severe AEs or SAEs during the study as a result of hESC therapy. hESC therapy was well tolerated among all
222 the patients included in the study. However; further large scale prospective studies are required for making hESC
223 therapy available clinically for patients with CVA.

224 **18 Volume XV Issue II Version I**

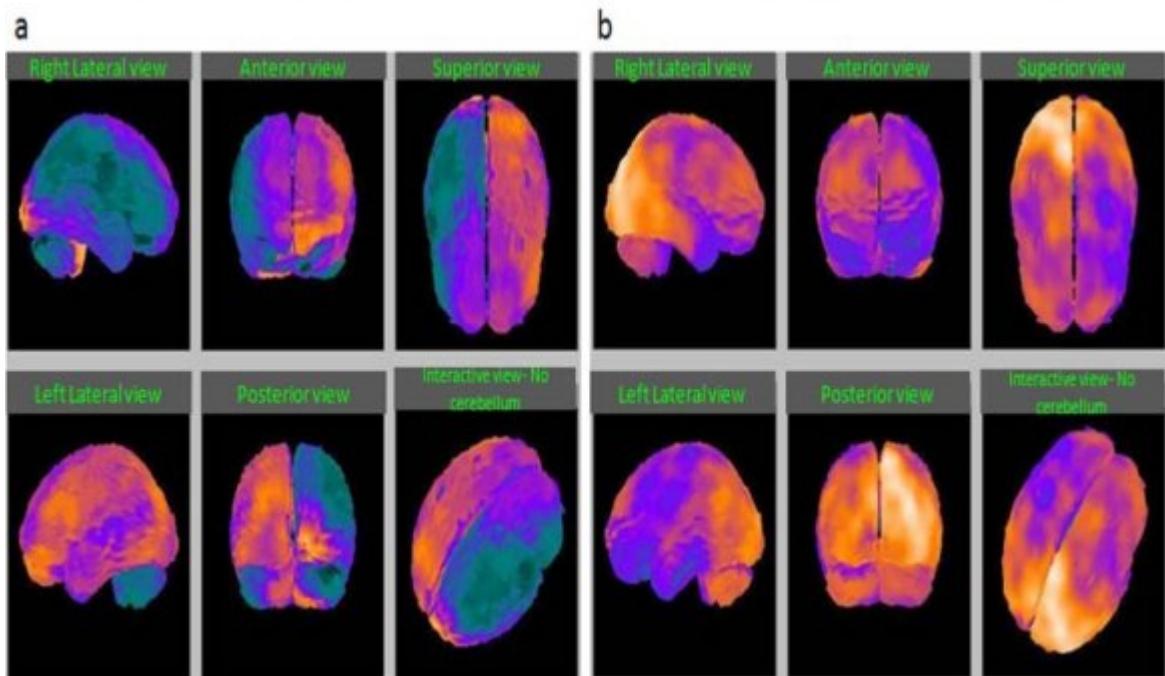
2 Figure 1: Fig 2)A


225 1 2 3 4

¹© 2015 Global Journals Inc. (US)

²Safety and Efficacy of Human Embryonic Stem Cells for the Treatment of Cerebrovascular Accident: A Case Series

³© 2015 Global Journals Inc. (US) Safety and Efficacy of Human Embryonic Stem Cells for the Treatment of Cerebrovascular Accident: A Case Series


⁴© 2015 Global Journals Inc. (US)Global Journal of Medical Research

*Caudal/BPI route if required + deep spinal muscle injection weekly (treatment period: 8 weeks)

**Additional dosing by caudal route + deep spinal muscle injection weekly (treatment period: 4 weeks)

Figure 2:

SPECT images reconstructed in transaxial, sagittal and coronal axis shows diffuse hypoperfusion globally with relative sparing of the cerebellum

Figure 3:

1

Treatment Period	N	End Period Score Median (Min, Max)	Change from Baseline Median (Min, Max)
Baseline	22	61 (24, 96)	-
T1	22	74 (42, 93)	14 (0, 20)
T2	8	67 (52, 92)	22 (3, 38)
T3	6	67 (66, 79)	24 (3, 42)
T4	4	70 (66, 79)	22 (3, 42)
T5	2	74 (72, 76)	14 (8, 19)
T6	2	81 (76, 82)	20 (19, 21)

Figure 4: Table 1 :

2

Sl.No	Age	Baseline	T1	T2	T3	T4	T5	Global Journal of Medical Research
								T6
1	25	64	78	-	-	-	-	-
2	32	64	64	67	67	67	72	85
3	41	73	79	-	-	-	-	-
4	42	52	64	67	71	79	-	-
5	56	66	77	-	-	-	-	-
6	56	50	64	66	79	-	-	-
7	57	52	72	-	-	-	-	-

[Note: 3Volume XV Issue II Version I]

Figure 5: Table 2 :

3

Parameter	Number of Patients Affected at Baseline	Number of Patients Showing Improvement by at least 1 level n (%)
Leg maintain position	22	19 (86.4)
Leg flexion	22	20 (90.9)
Gait	22	22 (100)
Arm outstretched position	21	19 (86.4)
Arm raising	21	20 (95.2)
Fingers	21	12 (57.1)
Foot Dorsiflexion	21	16 (76.2)
Wrist Extension	20	14 (70)
Speech	15	15 (100)
Facial movements	11	10 (90.9)
Level of consciousness	2	2 (100)
Visual field	2	1 (50)
Comprehension	1	1 (100)
Gaze	1	1 (100)

Figure 6: Table 3 :

4

Adverse Event	Number of Events (%)
Weakness/dizziness	3 (27.3)
Pain (shoulder, wrist, and joint)	2 (18.2)
Constipation	1 (9.1)
Fever	1 (9.1)
Anxiety	1 (9.1)
Blurred Vision	1 (9.1)
Diarrhea	1 (9.1)
Acidity	1 (9.1)

Figure 7: Table 4 :

226 .1 Acknowledgements

227 The authors acknowledge the staff of Nutech Mediworld and all the doctors. The authors also acknowledge
228 Knowledge Isotopes Pvt. Ltd (<http://www.Knowledgeisotopes.com>) for writing support.

229 .2 Conflict of Interest

230 The authors have no conflict of interest.

231 .3 Author's contribution

232 GS has made substantial contributions to design, conception, and investigation of the patients. GS also reviewed
233 and approved the final draft of the manuscript for publication. JKB has made substantial contributions to
234 conception and design, acquisition of data, analysis and interpretation of data.

235 Consent Statement: A written informed assent/consent was obtained from the patients/parents or legal
236 guardians prior to the treatment for publication of this Case report and any accompanying images.

237 VI.

238 [Moran et al. ()] 'A systematic review investigating fatigue, psychological and cognitive impairment following
239 TIA and minor stroke: protocol paper'. G M Moran , B Fletcher , M Calvert , M G Feltham , C Sackley , T
240 Marshall . *Syst Rev* 2013. 2 p. 72.

241 [Association (2012)] *Balance problems after stroke*, S Association . http://www.stroke.org.uk/sites/default/files/F22_Balance%20problems%20after%20stroke.pdf Apr 2012. 03 Aug 2014.

243 [Luo ()] 'Cell-based therapy for stroke'. Y Luo . *J Neural Transm* 2011. 118 (1) p. .

244 [Kim et al. ()] 'Correlation between the Activities of Daily Living of Stroke Patients in a Community Setting
245 and Their Quality of Life'. K Kim , Y M Kim , E K Kim . *J Phys Ther Sci* 2014. 26 (3) p. .

246 [Foundation (2014)] *Early treatment after a stroke*, S Foundation . <http://strokefoundation.com.au/what-is-a-stroke/treatment-for-stroke/early-treatment-after-a-stroke/> 2014. 29 Jul
247 2014.

249 [Cheng et al. ()] 'Genetics of ischemic stroke in young adults'. Y C Cheng , J W Cole , S J Kittner , B D Mitchell
250 . *Circ Cardiovasc Genet* 2014. 7 (3) p. .

251 [Mendis et al.] *Global Atlas on cardiovascular disease prevention and control* 2011, S Mendis , Pp , B Norrving .
252 http://whqlibdoc.who.int/publications/2011/9789241564373_eng.pdf?ua=1

253 [Adams et al. ()] 'Guidelines for the early management of adults with ischemic stroke: a guideline from the
254 American Heart Association/ American Stroke Association Stroke Council, Clinical Cardiology Council,
255 Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease
256 and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of
257 Neurology affirms the value of this guideline as an educational tool for neurologists'. H P AdamsJr , G Del
258 Zoppo , M J Alberts , D L Bhatt , L Brass , A Furlan . *Stroke* 2007. 38 (5) p. .

259 [Jauch et al. ()] 'Guidelines for the early management of patients with acute ischemic stroke: a guideline for
260 healthcare professionals from the American Heart Association/ American Stroke Association'. E C Jauch , J
261 L Saver , H P Adams , Jr Bruno , A Connors , J J Demaerschalk , BM . *Stroke* 2013. 44 (3) p. .

262 [Drury-Stewart et al. ()] 'Highly efficient differentiation of neural precursors from human embryonic stem cells
263 and benefits of transplantation after ischemic stroke in mice'. D Drury-Stewart , M Song , O Mohamad , Y
264 Guo , X Gu , D Chen . *Stem Cell Res Ther* 2013. 4 (4) p. 93.

265 [Kang et al. ()] 'Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem
266 cell therapy'. S K Kang , I S Shin , M S Ko , J Y Jo , J C Ra . *Stem Cells Int* 2012. p. 342968.

267 [Huang et al. ()] 'Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation'. P Huang
268 , N Gebhart , E Richelson , T G Brott , J F Meschia , A C Zubair . *Cytotherapy* 2014.

269 [Kondziolka et al. ()] 'Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized
270 trial'. D Kondziolka , G K Steinberg , L Wechsler , C C Meltzer , E Elder , J Gebel . *J Neurosurg* 2005. 103
271 (1) p. .

272 [Dew and Harrison ()] 'Problem list of stroke patients as identified in the problem orientated medical record'. W
273 J Dew , M A Harrison . *Aust J Physiother* 1985. 31 (4) p. .

274 [Mathers and Loncar ()] 'Projections of global mortality and burden of disease from 2002 to 2030'. C D Mathers
275 , D Loncar . *PLoS Med* 2006. 3 (11) p. e442.

276 [Hess and Borlongan ()] 'Stem cells and neurological diseases'. D C Hess , C V Borlongan . *Cell Prolif* 2008. 41
277 (1) p. . (Suppl)

278 [Burns et al. ()] 'Stem cells for ischemic brain injury: a critical review'. T C Burns , C M Verfaillie , W C Low .
279 *J Comp Neurol* 2009. 515 (1) p. .

280 [Lindvall and Kokaia ()] 'Stem cells in human neurodegenerative disorders-time for clinical translation?' O
281 Lindvall , Z Kokaia . *J Clin Invest* 2010. 120 (1) p. .

282 [Dalai and Shenoy ()] 'Stroke epidemic in India -time to prioritize prevention strategies'. P M Dalai , A Shenoy
283 . *J Assoc Physicians India* 2013. 61 (10) p. .

284 [Das and Banerjee ()] 'Stroke: Indian scenario'. S K Das , T K Banerjee . *Circulation* 2008. 118 (25) p. .

285 [Thacker et al. ()] 'The American Heart Association life's simple 7 and incident cognitive impairment: The
286 REasons for Geographic And Racial Differences in Stroke (REGARDS) study'. E L Thacker , S R Gillett , V
287 G Wadley , F W Unverzagt , S E Judd , L A McClure . *J Am Heart Assoc* 2014. 3 (3) p. e000635.

288 [Hantson et al. ()] 'The European Stroke Scale'. L Hantson , De Weerdt , W , De Keyser , J Diener , H C Franke
289 , C Palm , R . *Stroke* 1994. 25 (11) p. .

290 [Eggenhofer et al. ()] 'The life and fate of mesenchymal stem cells'. E Eggenhofer , F Luk , M H Dahlke , M J
291 Hoogduijn . *Front Immunol* 2014. 5 p. 148.

292 [Chan et al. ()] 'The use of ADSCs as a treatment for chronic stroke'. T M Chan , H J Harn , H P Lin , S C
293 Chiu , P C Lin , H I Wang . *Cell Transplant* 2014. 23 (4-5) p. .

294 [Shroff et al. ()] 'Therapeutic potential of human embryonic stem cell transplantation in patients with cerebral
295 palsy'. G Shroff , Ga , J Barthakur . *J Transl Med* 2014. p. 318.