Study of EEG Signal for Epilepsy Detection and Localization Using Bagged Tree and SVM Algorithms
Keywords:
Abstract
Epilepsy is considered one of the common medical and social disorders with unique characteristics. EEG signal was used for the classification and detection of epilepsy. This study proposed epilepsy classification without signal decomposition, as well as other algorithms used for decomposing the EEG signal to sub-bands like discrete wavelet transform (DWT) and dual-tree complex wavelet transform (DT-CWT). Descriptive comparisons were done between results for EEG signals with/without decomposition. The proposed algorithm includes the study of the extracted features and using machine learning kernels as Support Vector Machine (SVM) and bagged tree to achieve the optimal values of (accuracy-specificity-sensitivity and execution time). Results show that adding the line length to the group of features, the accuracy increased to 99.4%. By employing decomposing the EEG signal, the accuracy could be raised to99.875 % even after reducing the number of features to only three features. These features are line length, STD, and mean. This study proposed different algorithms with minimum features for epilepsy classification and localization with optimum execution time.
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2019-05-15
Issue
Section
License
Copyright (c) 2019 Authors and Global Journals Private Limited

This work is licensed under a Creative Commons Attribution 4.0 International License.